NASA Logo, National Aeronautics and Space Administration
CDAWeb
+ FEEDBACK
CDAWeb banner

CDAWeb Served Heliophysics Datasets Beginning with 'I'

I1_AV2_OTT: ISIS-1 Topside Sounder Ionogram over Ottawa, Canada (lat/lon=45/284) corrected - R.F. Benson (NASA GSFC)
I1_AV_ALL: ISIS-1 Topside sounder ionograms, all stations merged into a single dataset - R.F. Benson (NASA GSFC)
I1_AV_KER: ISIS-1 Topside Sounder Ionograms over Kerguelen Island, France (Lat=-49, Long=70) - R.F. Benson (NASA GSFC)
I1_AV_KSH: ISIS-1 Topside Sounder Ionogram over Kashima, Japan (lat/lon=36/141) - R.F. Benson (NASA GSFC)
I1_AV_KWA: ISIS-1 Topside Sounder Ionogram over Kwajalein, Marshall Is. (lat/lon=9/168) - R.F. Benson (NASA GSFC)
I1_AV_ODG: ISIS-1 Topside Sounder Ionogram over Ouagadougou, Burkina Faso (lat/lon=14/359) - R.F. Benson (NASA GSFC)
I1_AV_ORR: ISIS-1 Topside Sounder Ionogram over Orroral, Australia (lat/lon=-36/149) - R.F. Benson (NASA GSFC)
I1_AV_OTT: ISIS-1 Topside Sounder Ionogram over Ottawa, Canada (lat/lon=45/284) - R.F. Benson (NASA GSFC)
I1_AV_QUI: ISIS-1 Topside Sounder Ionogram over Quito, Equador (lat/lon=-1/281) - R.F. Benson (NASA GSFC)
I1_AV_RES: ISIS-1 Topside Sounder Ionogram over Resolute Bay, Canada (lat/lon=75/265) - R.F. Benson (NASA GSFC)
I1_AV_SNT: ISIS-1 Topside Sounder Ionogram over Santiago, Chile (lat/lon=-33/298) - R.F. Benson (NASA GSFC)
I1_AV_SOD: ISIS-1 Topside Sounder Ionogram over Sodankyla, Finland (lat/lon=67/27) - R.F. Benson (NASA GSFC)
I1_AV_TRO: ISIS-1 Topside Sounder Ionogram over Tromso, Norway (lat/lon=70/19) - R.F. Benson (NASA GSFC)
I1_AV_ULA: ISIS-1 Topside Sounder Ionogram over Fairbanks, Alaska (lat/lon=65/212) - R.F. Benson (NASA GSFC)
I1_AV_WNK: ISIS-1 Topside Sounder Ionogram over Winkfield, U.K. (lat/lon=51/359) - R.F. Benson (NASA GSFC)
I1_NEPROF_TOPS: ISIS-1 Topside Electron Density Profiles, manually scaled at CRC - J. E. Jackson (Communication Research Centre (CRC), Ottawa)
I2_AV_ACN: ISIS-2 Topside Sounder Ionogram over Ascension Is., U.K. (lat/lon= -8/346) - R.F. Benson (NASA GSFC)
I2_AV_ADL: ISIS-2 Topside Sounder Ionogram over Terre Adelie, Antarctica (lat/lon=-67/140) - R.F. Benson (NASA GSFC)
I2_AV_AME: ISIS-2 Topside Sounder Ionogram over Ahmedabad, India (lat/lon=23/73) - R.F. Benson (NASA GSFC)
I2_AV_BRZ: ISIS-2 Topside Sounder Ionogram over Brazzavillle, Congo (lat/lon=-4/15) - R.F. Benson (NASA GSFC)
I2_AV_BUR: ISIS-2 Topside Sounder Ionogram over Johannesburg, South Africa (lat/lon=-26/28) - R.F. Benson (NASA GSFC)
I2_AV_CNA: ISIS-2 Topside Sounder Ionogram over Las Palmas, Canary Is., Spain (lat/lon=28/345) - R.F. Benson (NASA GSFC)
I2_AV_KER: ISIS-2 Topside Sounder Ionogram over Kerguelen Is., France (lat/lon=-49/70) - R.F. Benson (NASA GSFC)
I2_AV_KRU: ISIS-2 Topside Sounder Ionogram over Kourou, French Guyana (lat/lon=5/307) - R.F. Benson (NASA GSFC)
I2_AV_KSH: ISIS-2 Topside Sounder Ionogram over Kashima, Japan (lat/lon=36/141) - R.F. Benson (NASA GSFC)
I2_AV_KWA: ISIS-2 Topside Sounder Ionogram over Kwajalein, Marshall Is. (lat/lon=9/168) - R.F. Benson (NASA GSFC)
I2_AV_LAU: ISIS-2 Topside Sounder Ionogram over Lauder, New Zealand (lat/lon=-45/170) - R.F. Benson (NASA GSFC)
I2_AV_ODG: ISIS-2 Topside Sounder Ionogram over Ouagadougou, Burkina Faso (lat/lon=14/359) - R.F. Benson (NASA GSFC)
I2_AV_ORR: ISIS-2 Topside Sounder Ionogram over Orroral Australia (lat/lon=-36/149) - R.F. Benson (NASA GSFC)
I2_AV_OTT: ISIS-2 Topside Sounder Ionogram over Ottawa, Canada (lat/lon=45/284) - R.F. Benson (NASA GSFC)
I2_AV_QUI: ISIS-2 Topside Sounder Ionogram over Quito, Equador (lat/lon=-1/281) - R.F. Benson (NASA GSFC)
I2_AV_RES: ISIS-2 Topside Sounder Ionogram over Resolute Bay, Canada (lat/lon=75/265) - R.F. Benson (NASA GSFC)
I2_AV_SNT: ISIS-2 Topside Sounder Ionogram over Santiago, Chile (lat/lon=-33/298) - R.F. Benson (NASA GSFC)
I2_AV_SOD: ISIS-2 Topside Sounder Ionogram over Sodankyla, Finland (lat/lon=67/27) - R.F. Benson (NASA GSFC)
I2_AV_SOL: ISIS-2 Topside Sounder Ionogram over Falkland Is., U.K. (lat/lon=-52/302) - R.F. Benson (NASA GSFC)
I2_AV_SYO: ISIS-2 Topside Sounder Ionogram over Syowa Base, Antartica (lat/lon=-69/40) - R.F. Benson (NASA GSFC)
I2_AV_TRO: ISIS-2 Topside Sounder Ionogram over Tromso, Norway (lat/lon=70/19) - R.F. Benson (NASA GSFC)
I2_AV_ULA: ISIS-2 Topside Sounder Ionogram over Fairbanks, Alaska (lat/lon=65/212) - R.F. Benson (NASA GSFC)
I2_AV_WNK: ISIS-2 Topside Sounder Ionogram over Winkfield, U.K. (lat/lon=51/359) - R.F. Benson (NASA GSFC)
I2_NEPROF_TOPIST: ISIS-2 TOPIST produced electron density profiles, of highest quality (quality flag = 2 and 3 - X. Huang and B. Reinisch (University of MassachusettsLowell)
I2_NEPROF_TOPS: ISIS-2 Topside Electron Density Profiles, manually scaled at CRC - J. E. Jackson (Communication Research Centre (CRC), Ottawa)
I7_R0_LEPEDEA: Link to IMP7 LEPEDEA Energy-Time Spectrograms in GIF format at the University of Iowa. - L. A. Frank (University of Iowa)
I8_15SEC_MAG: IMP-8 Fluxgate Magnetometer, 15.36-Second Resolution Data - A. Szabo / R.P. Lepping (NASA GSFC)
I8_320MSEC_MAG: IMP-8 Fluxgate Magnetometer, 320 msec Resolution Data - Adam Szabo, Joe King and Natalia Papitashvili (NASA GSFC)
I8_H0_GME: IMP-8 GME 30-min Fluxes (SEP optimal bands) - R.E. McGuire (SPDF/Code 612.4, NASA's GSFC)
I8_H0_MITPLASMA: IMP-8 MIT Plasma Investigation, High Resolution Definitive Data - A. Lazarus (MIT)
I8_OR_GIFWALK: Links to IMP-8 and multi-mission orbit plots - Polar-Wind-Geotail Ground System (NASA GSFC)
I8_OR_SSC: IMP-8 orbital position (multiple coordinate systems, from April 2003 updated I8 orbit model) - SSC ( SPDF/GSFC)
I8_R0_LEPEDEA: Link to IMP8 LEPEDEA Energy-Time Spectrograms in GIF format at the University of Iowa. - L. A. Frank (University of Iowa)
IA_K0_ENF: Interball Auroral Probemeasurements of spectra and anisotropy of electrons SKA-3, Key Parameters - Yu. Galperin, R. Kovrazhkin, A. Kuzmin, F. Shuiskaya (IKI RAN, Russia)
IA_K0_EPI: Interball Auroral Energetic Particle Instruments, KeyParameters - DOK-2: K.Kudela (DOK-2: Institute of experimental physics Slovak Acad. Sci., Kosize, Slovakia )
IA_K0_ICD: Interball Auroral Probe Ion Composition Experiment PROMICS, Key Parameters - I.Sandahl (IRF, Kiruna, Sweden)
IA_K0_MFI: Interball Auroral probe Magnetic Field, Key Parameters - V.Petrov (IMAP:IZMIRAN,Troitsk, Russia. )
IA_OR_DEF: Interball Auroral Probe Orbital Data, Key Parameters - V.Prokhorenko (Space Research Inst., Russian Acad. Sci., Moscow, Russia. )
IG_K0_PCI: Interball Polar Cap Activity Index, Key Parameters - V.Sergeev (Institute of physics Univ. of St.-Peterburg St.-Peterburg, Russia )
IM_ELECTRON_DENSITY_RPI: IMAGE RPI electron density along the spacecraft orbit, IMAGE Radio Plasma Imager (RPI) - R. E. Denton & B.W. Reinisch (Dartmouth, UMLCAR)
IM_HK_ADS: Image Attitude Determination System Housekeeping - Dr. Jim Burch (Southwest Research Institute)
IM_HK_AST: Image Autonomous Star Tracker Housekeeping - Dr. Jim Burch (Southwest Research Institute)
IM_HK_COM: Image Communication Systems Housekeeping - Dr. Jim Burch (Southwest Research Institute)
IM_HK_FSW: Image Flight Software Housekeeping - Dr. Jim Burch (Southwest Research Institute)
IM_HK_PWR: Image Power Systems Housekeeping - Dr. Jim Burch (Southwest Research Institute)
IM_HK_TML: Image Thermal Housekeeping - Dr. Jim Burch (Southwest Research Institute)
IM_K0_EUV: Ion Images, Key Parameters, IMAGE Extreme UltraViolet (EUV) experiment - Bill Sandel (U/Arizona)
IM_K0_HENA: High Energy Neutral Atom (HENA) H Images, Key Parameters, IMAGE - Dr. Don Mitchell (APL)
IM_K0_LENA: IMAGE Low Energy Neutral Atom (LENA) Imager Key Parameters - Dr. Tom Moore (GSFC)
IM_K0_MENA: Medium Energy Neutral Atom (MENA) H Images, Key Parameters, IMAGE - Dr. Craig Pollock (SwRI)
IM_K0_RPI: RPI Plasmagram/Echomap, Key Parameters, IMAGE Radio Plasma Imager (RPI) - B.W. Reinisch (UMLCAR)
IM_K0_SIE: Electron Auroral Images @ 1356A, Key Parameters, IMAGE Far UltraViolet (FUV) Spectrographic Imaging camera Electrons (SIE) - S. Mende (UC/Berkeley/SSL)
IM_K0_SIP: Proton Auroral Images @ 1218A, Key Parameters, IMAGE Far UltraViolet (FUV) Spectrographic Imaging camera Protons (SIP) - S. Mende (UC/Berkeley/SSL)
IM_K0_WIC: Auroral Images, Key Parameters, IMAGE Far UltraViolet (FUV) Wide-band Imaging Camera (WIC) - S. Mende (UC/Berkeley/SSL)
IM_K1_RPI: RPI Dynamic Spectrogram, Key Parameters, IMAGE Radio Plasma Imager (RPI) - B.W. Reinisch (UMLCAR)
IM_OR_DEF: Image Definitive Data Orbit - Dr. Jim Burch (Southwest Research Institute)
IM_OR_GIFWALK: Link to IMAGE orbit plots - Polar-Wind-Geotail Ground System (NASA GSFC)
IM_OR_PRE: IMAGE Predicted Orbit - Dr. Jim Burch (Southwest Research Institute)
ISEE-3_MAGPLASMA_2MIN_MAGNETIC_FIELD_PLASMA: 2 min averaged magnetic field and plasma - Edward Smith (JPL NASA)
ISEE-3_MAG_1MIN_MAGNETIC_FIELD: 1 min averaged magnetic field - Edward Smith (JPL NASA)
ISEE1_4SEC_MFI: 12-sec avg vector magnetic field at 4-sec intervals - C. T. Russell (UCLA)
ISEE1_60SEC_MFI: 60-sec vector magnetic field - C. T. Russell (UCLA)
ISEE1_H0_FE: ISEE1_Fast Electrons - K. Ogilvie, R. Fitzenreiter, & A. Vinas (GSFC Code 690)
ISEE1_H1_FPE: ISEE 1_H1_FPE / Proton Fluid Parameters 6 RE - Bow Shock - S. Bame & J. Gosling (LANL)
ISEE1_H2_FPE: ISEE1_H2_FPE / Solar Wind 24-sec Ion Moments - S. Bame & J. Gosling (LANL)
ISEE1_PWI_SA: ISEE-1 PWI: Spectrum Analyzer (SA) - Donald Gurnett (University Iowa)
ISEE1_PWI_SA-RAPID-E: ISEE-1 PWI: Spectrum Analyzer (SA) rapid samples - Donald Gurnett (University Iowa)
ISEE1_PWI_SFR-E: ISEE-1 PWI: Sweep Frequency Receiver (SFR) - Donald Gurnett (University Iowa)
ISEE2_4SEC_MFI: 12-sec avg vector magnetic field at 4-sec intervals - C. T. Russell (UCLA)
ISEE2_60SEC_MFI: 60-sec vector magnetic field - C. T. Russell (UCLA)
ISEE2_H1_FPE: ISEE 2_H1_FPE / Proton Fluid Parameters 6 RE - Bow Shock - S. Bame & J. Gosling (LANL)
ISS_27DAY-AVERAGES_AMS-02: AMS-02 proton flux (p), helium flux (He), p/He flux ratio, electron flux (e-), positron flux (e+) and e+/e- flux ratio at Bartels rotation time resolution - Prof. V. Bindi (University of Hawaii at Manoa)
ISS_DOSANL_TEPC: Experiment Data, ISS TEPC (from ASCII DOS.TXT file) - Edward Semones (NASA Space Radiation Analysis Group/Johnson Space Center)
ISS_SP_FPMU: ISS FPMU Summary Plasma Densities and Temperatures [Contact Rob.Suggs@nasa.gov for support and use.] - R. Suggs (NASA Marshall Space Flight Center)
IT_H0_MFI: Interball-Tail 6 sec vector magnetic field data - M.Nozdrachev (IKI, Moscow, Russia)
IT_K0_AKR: Interball Tail Probe AKR Radioemission flux, Key Parameters - V.Kurilchik (Sternberg Astronomical Inst.,Moscow State University, 119899, Universitetsky pr., 13 Moscow, Russia)
IT_K0_COR: Interball Tail Probe CORALL ion moments, Key Parameters - Yu.Yermolaev (Space Research Inst., Russian Acad. Sci., Moscow, Russia)
IT_K0_ELE: Interball Tail probe ELECTRON instrument, Key Parameters - J.-A. Sauvaud (CESR, BP 4346, 31029, Toulouse, France )
IT_K0_EPI: Interball Tail Energetic Particle Instruments, Key Parameters - DOK-2: K.Kudela (DOK-2: Institute of experimental physics Slovak Acad. Sci., Kosize, Slovakia )
IT_K0_ICD: Interball Tail Probe Ion Composition Experiment PROMICS, Key Parameters - I.Sandahl (IRF, Kiruna, Sweden)
IT_K0_MFI: Interball Tail probe Magnetic Field, Key Parameters - S.Romanov (Space Research Inst., Russian Acad. Sci., Moscow, Russia. )
IT_K0_VDP: Interball Tail probe VDP instrument, Key Parameters - J.Safrankova (Charles University, Prague, Czech Republic )
IT_K0_WAV: Interball Tail probe Magnetic Field, Key Parameters - S.Romanov (Space Research Inst., Russian Acad. Sci., Moscow, Russia. )
IT_OR_DEF: Interball Tail Orbital Data, Key Parameters - V.Prokhorenko (Space Research Inst., Russian Acad. Sci., Moscow, Russia. )
IT_OR_GIFWALK: Links to Interball-Tail and multi-mission orbit plots - Polar-Wind-Geotail Ground System (NASA GSFC)

I1_AV2_OTT
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_ALL
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_KER
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_KSH
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_KWA
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_ODG
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_ORR
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_OTT
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_QUI
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_RES
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_SNT
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_SOD
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_TRO
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_ULA
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_AV_WNK
Description
This ionogram was digitized from the original ISIS 1 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1998
 
Dataset in CDAWeb
Back to top
I1_NEPROF_TOPS
Description
This data set, provided by the Communications Research Centre (CRC) in Ottawa,
Canada, consists of electron density profiles for the ionosphere above the F2
maximum (topside ionosphere). The data were computed from the orginal ionograms
using Jackson's method (Jackson, Proceedings of the IEEE., p. 960, June 1969).
ISIS-1 was launched on 1969-01-30 into an elliptical orbit (500-3500km) with an
inclination of 88.4 degrees and ISIS-2 was launched on 1971-04-01 into an
circular orbit at 1400 km with an inclination of 88.1 degrees.
Both satellites were fully instrumented ionospheric observatories including
sweep- and fixed-frequequency ionosondes, a VLF receiver, energetic and soft
particle detectors, an ion mass spectrometer, an electrostatic analyzer, an
Langmuir probe, a beacon transmitter, a cosmic noise experiment and ISIS 2 also
carried two photometers. A tape recorder with 1-h capacity was included on both
satellites. Data were also collected during overflights of several telemetry
stations. The telemetry stations were in areas that provided primary data
coverage near the 80-deg-W meridian and in areas near Hawaii, Singapore,
Australia, the UK, Norway, India, Japan, Antarctica, New Zealand, and Central
Africa.
 
Dataset in CDAWeb
Back to top
I2_AV_ACN
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_ADL
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_AME
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_BRZ
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_BUR
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_CNA
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_KER
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_KRU
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_KSH
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_KWA
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_LAU
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_ODG
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_ORR
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_OTT
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_QUI
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_RES
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_SNT
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_SOD
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_SOL
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_SYO
Description
A 7-track ISIS 2 analog telemetry tape from Ottawa (#561) has been 
digitized using the GSFC facilities of the Data Evaluation Laboratory 
(DEL) within the Mission Operations and Data Systems Directorate (Code 
500) at Goddard.  The digitization was performed using an A/D 
converter board and software device driver compatible with the OS/2 
operating system used by the 486-based Programmable Telemetry 
Processor (PTP) associated software has been installed on their PTP 
and de-bugged so that we now have a working system for making digital 
ISIS ionograms directly from the telemetry tapes.  Earlier, we 
successfully digitized the PCM and NASA 36 bit time-code data from 
this same tape. The ionograms were digitized at the rate of 40,000 
16-bit samples/sec. This sample rate is higher than the Nyquist 
frequency of 30 kHz appropriate for the post-detection ISIS 2 
sounder-receiver video output which extends from DC to 15 kHz (see p. 
50 of the 1971 ISIS 2 report by Daniels).  The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (ct/2) interval of 3.747 km.  With the ISIS 2 prf of 45 
sounder pulses/s, there are (1/45)/(2.5**(-5)) = 888.89 samples 
between each of the approximately 1015 sounder pulses per ionogram 
(including the fixed-frequency portion) or nearly 10**6 16-bit 
samples/ionogram (approximately 1.8 MBytes) for just the 
sounder-receiver video data. Adding header information, and the pcm 
data containing data from the other instruments, yields about 2 MBytes 
of data for the 22.5 s period corresponding to one ionogram. Two steps 
were taken in order to reduce this large volume of nearly 2 
MBytes/ionogram.  First, every four 25 microsecond samples following 
the sounder pulse were averaged.  Second, the 16 bit samples were 
reduced to 8 bit samples.  The first step decreased the apparent-range 
resolution to 15 km, but yielded high-quality ionograms because of the 
improved S/N due to the averaging. 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_TRO
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_ULA
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_AV_WNK
Description
This ionogram was digitized from the original ISIS 2 analog 
telemetry data on 7-track tape using the facilities of the Data 
Evaluation Laboratory at GSFC (Code 500). This data restoration 
project is headed by Dr. R.F. Benson (GSFC, Code 692). Ionograms were 
digitized at the rate of 40,000 16-bit samples/sec. This sample rate is 
higher than the Nyquist frequency of 30 kHz. The sample frequency of 40 
kHz provides a measurement every 25 microseconds corresponding to an 
apparent range (c*t/2) interval of 3.747 km. Each ionogram consists 
of a fixed-frequency and and a swept-frequency portion. The time 
resolution is typically 24 seconds. More information can be found 
at https://nssdc/space/isis/isis-status.html 
Modification History
created April 1995
 
Dataset in CDAWeb
Back to top
I2_NEPROF_TOPIST
Description
ISIS 2 was an ionospheric observatory instrumented with a sweep- and a
fixed-frequency ionosonde, a VLF receiver, energetic and soft particle
detectors, an ion mass spectrometer, an electrostatic probe, a retarding
potential analyzer, a beacon transmitter, a cosmic noise experiment, and two
photometers. Two long crossed-dipole antennas (73 and 18.7 m) were used for the
sounding, VLF, and cosmic noise experiments.
The spacecraft was spin-stabilized to about 2 rpm after antenna deployment.
There were two basic orientation modes for the spacecraft, cartwheel and
orbit-aligned. The spacecraft operated approximately the same length of time in
each mode, remaining in one mode typically 3 to 5 months. The cartwheel mode
with the axis perpendicular to the orbit plane was made available to provide ram
and wake data for some experiments for each spin period, rather than for each
orbit period. Attitude and spin information was obtained from a three-axis
magnetometer and a sun sensor. Control of attitude and spin was possible by
means of magnetic torquing.
The experiment package also included a programmable tape recorder with a one
hour capacity. For non-recorded observations, data from satellite and
subsatellite regions were telemetered when the spacecraft was in the line of
sight of a telemetry station. Telemetry stations were located so that primary
data coverage was near the 80-deg-W meridian and near Hawaii, Singapore,
Australia, England, France, Norway, India, Japan, Antarctica, New Zealand, and
Central Africa. NASA support of the ISIS project was terminated on October 1,
1979.  
A significant amount of experimental data, however, was acquired after this date
by the Canadian project team. ISIS 2 operations were terminated in Canada on
March 9, 1984. The Radio Research Laboratories (Tokyo, Japan) then requested and
received permission to reactivate ISIS 2. Regular ISIS 2 operations were started
from Kashima, Japan, in early August 1984. ISIS 2 was deactivated effective 24,
1990. A data restoration effort began in the late 1990s and successfully saved a
considerable portion of the high-resolution data before the telemetry tapes were
discarted.
The data set was generated from the averaged ionogram binary data (SPIO-00318)
recorded by the Topside Sounder. The data are obtained with the TOPIST program,
which analyzes the data, automatically scales the ionogram traces and
resonances, and inverts the traces into an electron density profile. The same
program is available for use to hand-scale the data if desired. Output data
items include spacecraft position, electron density profile, assessment of
quality, resonance and cut-off frequencies, and both the O-trace and X-trace.
 
Dataset in CDAWeb
Back to top
I2_NEPROF_TOPS
Description
This data set, provided by the Communications Research Centre (CRC) in Ottawa,
Canada, consists of electron density profiles for the ionosphere above the F2
maximum (topside ionosphere). The data were computed from the orginal ionograms
using Jackson's method (Jackson, Proceedings of the IEEE., p. 960, June 1969).
ISIS-1 was launched on 1969-01-30 into an elliptical orbit (500-3500km) with an
inclination of 88.4 degrees and ISIS-2 was launched on 1971-04-01 into an
circular orbit at 1400 km with an inclination of 88.1 degrees.
Both satellites were fully instrumented ionospheric observatories including
sweep- and fixed-frequequency ionosondes, a VLF receiver, energetic and soft
particle detectors, an ion mass spectrometer, an electrostatic analyzer, an
Langmuir probe, a beacon transmitter, a cosmic noise experiment and ISIS 2 also
carried two photometers. A tape recorder with 1-h capacity was included on both
satellites. Data were also collected during overflights of several telemetry
stations. The telemetry stations were in areas that provided primary data
coverage near the 80-deg-W meridian and in areas near Hawaii, Singapore,
Australia, the UK, Norway, India, Japan, Antarctica, New Zealand, and Central
Africa.
 
Dataset in CDAWeb
Back to top
I7_R0_LEPEDEA
Description
No TEXT global attribute value.
 
Dataset in CDAWeb
Back to top
I8_15SEC_MAG (spase://VMO/NumericalData/IMP8/MAG/PT15.36S)
Description
This 15.36s data set was created in 2008-9 at GSFC/SPDF from a newly created
320ms data set, with some gaps filled with data from the prior 15.36s data set. 
Full documentation may be found at
ftp://nssdcftp.gsfc.nasa.gov/spacecraft_data/imp/imp8/mag/15s_ascii_v3/00_IMP8_1
5s_data_docum.txt.  Creation of the new 320ms and 15.36s data sets was done by
N. Papitashvili and J. King, with guidance from Adam Szabo. 
Modification History
Master CDF made 02/16/10 by N. E. Papitashvili, SPDF Modified to revised form
v03 on 02/16/10.
 
Dataset in CDAWeb
Back to top
I8_320MSEC_MAG (spase://VMO/NumericalData/IMP8/MAG/PT0.32S)
Description
For detailed documentation on the creation of this data set see
ftp://omniweb.gsfc.nasa.gov/imp8/mag/320ms_ascii/cleaned/doc/imp8_mag_320ms_proc
.txt
 
Dataset in CDAWeb
Back to top
I8_H0_GME (spase://VEPO/NumericalData/IMP8/GME/PT30M)
Description
30-min avg flex I8 GME
Modification History
v0.1 (vv01) May/Aug97  orig 30-min design V0.2 (vv02) Nov97  split protons into 
two vars by energies  (not needed virvars) V0.3 (vv03) Jul/Aug98  cleaned up var
names & set up for virvars V0.4 (vv04) Aug98  defined virvars for  alternate
views
 
Dataset in CDAWeb
Back to top
I8_H0_MITPLASMA (spase://VMO/NumericalData/IMP8/PLS/PT01M)
Description
See online MIT documentation
Modification History
 CDF versions created August 2004
 
Dataset in CDAWeb
Back to top
I8_OR_GIFWALK
Description
Pre-generated PWG plots
 
Dataset in CDAWeb
Back to top
I8_OR_SSC (spase://VMO/NumericalData/IMP8/Ephemeris/PT12M)
Description
Generated by SSCWeb from Heather Franz's "Second Experimental Ephemeris" as
approved by IMP-8 PIs 
Modification History
Originated 03/14/96
 
Dataset in CDAWeb
Back to top
I8_R0_LEPEDEA
Description
No TEXT global attribute value.
 
Dataset in CDAWeb
Back to top
IA_K0_ENF
Description
Measurements of spectra and anisotropy of electrons witin energy ranges 20-40
keV from two time-of-flight detectors EM-1-1 and EM-1-2. The field of view of
these detectors are directed oppositely and perpendicular to the satellite 
rotation axis. 
Data description:  http://www.iki.rssi.ru/inte rball.html  
Modification History
created Sep 1998
 
Dataset in CDAWeb
Back to top
IA_K0_EPI
Description
No TEXT global attribute value.
Modification History
created Apr 1997
 
Dataset in CDAWeb
Back to top
IA_K0_ICD
Description
Count rate of H+, O+ ions in 2 min, three directions, (1-30 keV) Status flag
shows instrument mode.
Data description:  http://www.iki.rssi.ru/interball.html 
Modification History
created Sep 1998
 
Dataset in CDAWeb
Back to top
IA_K0_MFI
Description
Full description: http://www.iki.rssi.ru/interball.html 
Full description: http://www.iki.rssi.ru/interball.html 
Modification History
created May 1997
 
Dataset in CDAWeb
Back to top
IA_OR_DEF
Description
Full description: http://www.iki.rssi.ru/interball.html 
Full description: http://www.iki.rssi.ru/interball.html 
Modification History
created May 1997
edited global attributes Apr 1996
 
Dataset in CDAWeb
Back to top
IG_K0_PCI
Description
References:     1.Troshichev O.A. et al, Planet.Space Sci.,   36, 1095, 1988. 
2.Vennerstrom S. et al,  Report UAG-103, World Data Center A for STP, Boulder,
April 1994 
PC-index is an empirical magnetic activity index based on data from single
near-pole station (Thule or Vostok for N or S hemispheres, respectively).
Its derivation procedure is optimized to achieve the best correlation of 
PC-index with the solar wind electric field (SWEF) magnitude (
v*B*sin(teta/2)**2 ). 
The averaged horizontal magnetic disturbance vector (quiet  value subtracted) is
projected onto the optimal direction (defined  empirically for each UT hour and
each season based on the best correlation  with the SWEF) and, after
normalization to the equivalent value  of SWEF, it gives the PC-index (expressed
in mV/m). 
Although PC-index is  formally expressed in mV/m, it actually represents the 
measure of magnetic activity, the normalization procedure (to SWEF)  helps to
reduce the seasonal/diurnal effects to facilitate the intercomparison.
The resolution of the northern cap PC-index is 5 min and of the one from
southern cap - 15 min. However, one time scale with the 5 min step is used for
both indices and each  15 min averaged value of southern index is, hence,
repeated for three times. 
Full description: http://www.iki.rssi.ru/interball.html 
Modification History
created Mar 1996
 
Dataset in CDAWeb
Back to top
IM_ELECTRON_DENSITY_RPI
Description
The electron density values listed in this file are derived from the IMAGE Radio
Plasma Imager (B.W. Reinisch, PI) data using an automatic fitting program
written by Phillip Webb with manual correction.
The electron number densities were produced using an automated procedure (with
manual correction when necessary) which attempted to self-consistently fit an
enhancement in the IMAGE RPI Dynamic Spectra to either 1) the Upper Hybrid
Resonance band, 2) the Z-mode or 3) the continuum edge. The automatic algorithm
works by rules determined by comparison of the active and passive RPI data
[Benson et al., GRL, vol. 31, L20803, doi:10.1029/2004GL020847, 2004].
The manual data points are not from frequencies chosen freely by a human. Rather
the human specifies that the computer should search for a peak or continuum edge
in a certain frequency region. Thus even the manual points are determined, in
part, by the automatic algorithms. Of course that does not guarantee that the
data points are right, but it does eliminate some human bias.
For a more detailed description see .http://ulcar.uml.edu/rpi.html. 
 
Dataset in CDAWeb
Back to top
IM_HK_ADS
Description
tbs
Modification History
tbs
 
Dataset in CDAWeb
Back to top
IM_HK_AST
Description
tbs
Modification History
tbs
 
Dataset in CDAWeb
Back to top
IM_HK_COM
Description
tbs
Modification History
tbs
 
Dataset in CDAWeb
Back to top
IM_HK_FSW
Description
tbs
Modification History
tbs
 
Dataset in CDAWeb
Back to top
IM_HK_PWR
Description
tbs
Modification History
tbs
 
Dataset in CDAWeb
Back to top
IM_HK_TML
Description
tbs
Modification History
tbs
 
Dataset in CDAWeb
Back to top
IM_K0_EUV
Description
tbd
 
Dataset in CDAWeb
Back to top
IM_K0_HENA
Description
No TEXT global attribute value.
 
Dataset in CDAWeb
Back to top
IM_K0_LENA
Description
No TEXT global attribute value.
 
Dataset in CDAWeb
Back to top
IM_K0_MENA
Description
No TEXT global attribute value.
 
Dataset in CDAWeb
Back to top
IM_K0_RPI
Description
TBD
Modification History
Master with plasmagram vv's re-integrated with data CDFs 12/6/00 REM; 
SKTEditor review and corrections applied to master 12/6/00 REM;
 
Dataset in CDAWeb
Back to top
IM_K0_SIE
Description
electrons
SKT version 24-July-2000 
Mende et al: Far Ultraviolet Imaging from the IMAGE Spacecraft,Space Sciences
Review 1999  
 
Dataset in CDAWeb
Back to top
IM_K0_SIP
Description
Protons
SKT version 24-July-2000
Mende et al: Far Ultraviolet Imaging from the IMAGE Spacecraft,Space Sciences
Review 1999  
 
Dataset in CDAWeb
Back to top
IM_K0_WIC
Description
No TEXT global attribute value.
 
Dataset in CDAWeb
Back to top
IM_K1_RPI
Description
TBD
 
Dataset in CDAWeb
Back to top
IM_OR_DEF
Description
tbs
Modification History
tbs
 
Dataset in CDAWeb
Back to top
IM_OR_GIFWALK
Description
Pre-generated PWG plots
 
Dataset in CDAWeb
Back to top
IM_OR_PRE
Description
tbs
Modification History
tbs
 
Dataset in CDAWeb
Back to top
ISEE-3_MAGPLASMA_2MIN_MAGNETIC_FIELD_PLASMA
Description
These files provides access to a field/plasma-merged 2-min ISEE3 data setcreated
at NSSDC as part of preparing ISEE3 data for new OMNI. Input to the data set
were 1-min MAG magnetic field data, 24-splasma data, and daily spacecraft
position data, all obtained from
theftp://spdf.gsfc.nasa.gov/pub/data/isee/isee3/ from which needed documentation
may be found. The annual files of this ASCII data set may be accessed at FTP
siteftp://spdf.gsfc.nasa.gov/pub/data/isee/isee3/2_min_merged_mag_plasma/as
well.
Time span: Mag field: 1978-09-11 - 1982-10-12           Plasma: 1978-09-11 -
1980-02-19
Note that Magntic Field is given in SE- Spacecraft-centered Solar-Ecliptic
coordinate system. 
 
Dataset in CDAWeb
Back to top
ISEE-3_MAG_1MIN_MAGNETIC_FIELD
Description
This data set contains averaged 1-minute magnetic field data converted from
simple ASCII records. It was created at NSSDC from a more complex,
multi-resolution data set (NSSDC ID = SPHE-00673; Old ID = 78-079A-02D) provided
by the Principal Investigator team and now available
fromftp://nssdcftp.gsfc.nasa.gov/spacecraft_data/isee/isee3/magnetic_fields/1min
_ascii/
The coordinate system for the B-field components is the JPL-defined I,S
coordinate system (origin at the spacecraft): I is the unit vector in the
direction of the ISEE-3 spin axis (positive in the northward direction), and S
is the unit vector from the spacecraft to the sun. The z-axis is parallel to to
I, the y-axis to the cross-product I x S, and the x-axis to Y x Z. The I,S
coordinate system is approximately the same as the Solar Ecliptic (SE) system
since the spacecraft z-axis (the spin axis) is maintained within 0.5 degree of
perpendicular to the ecliptic plane. (SE is defined the same way as GSE, but
with the spacecraft [point of observation] substituted for Earth).  
For years 1984-1990 we added spacecraft position in HGI coordinate
The HGI coordinates are Sun-centered and inertially fixed with respect to an 
X-axis directed along the intersection line of theecliptic and solar equatorial 
planes, and defines zero of the longitude, HGI_LONG. The solar equator plane  is
inclined at 7.25degrees from the ecliptic. This direction was towards ecliptic 
longitude of 74.367 deg on 1 January 1900 at 12:00 UT; because of the precession
of the Earth"s equator, this longitude increases by 1.4 deg/century.  The Z-axis
is directed perpendicular to and northward of the solar equator, and the Y-axis
completes the right-handed set.  The longitude, HGI_LONG increase from zero in
the X-direction towards Y-direction.The latitude HG_LAT increases to +90 deg
towards  the north pole, and to -90 deg towardsm south pole. 
Note that here present values averaged in 1-minute, e.g. <B>^2 may be not equal
B^2)>.
 
Dataset in CDAWeb
Back to top
ISEE1_4SEC_MFI (spase://VMO/NumericalData/ISEE1/MAG/PT4S)
Description
C. T. Russell (IEEE Trans. Geoscience Electronics, GE-16, 239-242, 1978). This
publication is available online at
http://www-ssc.igpp.ucla.edu/personnel/russell/papers/ISEE_fluxgate/.
 
Dataset in CDAWeb
Back to top
ISEE1_60SEC_MFI (spase://VMO/NumericalData/ISEE1/MAG/PT1M)
Description
C. T. Russell (IEEE Trans. Geoscience Electronics, GE-16, 239-242, 1978). This
publication is available online at
http://www-ssc.igpp.ucla.edu/personnel/russell/papers/ISEE_fluxgate/.
 
Dataset in CDAWeb
Back to top
ISEE1_H0_FE (spase://VMO/NumericalData/ISEE1/VES/PT18S)
Description
This enhanced CDF master was generated by NSSDC, with input from R. Fitzenreiter
and A. F.-Vinas, to make useable a bare-bones CDF data set provided earlier to
NSSDC. This current CDF master version, Oct. 5, 2007, is used for making a new
CDF by selecting only certain variables from those available in the original
bare-bones CDF (SPHE-00414).
Modification History
Velocity units were changed to km/sec, and Hi, Mid, & Lowest energy 
channels above SC potential were changed from velocity to the corresponding 
energy value in eV.
 
Dataset in CDAWeb
Back to top
ISEE1_H1_FPE (spase://VMO/NumericalData/ISEE1/FPE/PT1M)
Description
Data coverage includes the region from 6 earth radii out to (but excluding) the
bow shock. The reasons for selecting this area of coverage are that the solar
wind ion distributions are too cold to be adequately resolved by this
instrument, and inside the region of 6 earth radii the fast plasma data would be
contaminated by the energetic particle background. 
The data are provided at a temporal resolution of approximately 60 seconds. They
represent moments of individual two-dimensional (2D) distributions obtained in
approximately 3 or approximately 6 seconds (see below). No time averaging over
longer intervals is involved; instead, the temporal resolution of the full data
set (approximately 3 / 6 / 12 s) was reduced to approximately 60 s. The UT given
indicates the start of the respective sampling interval. For a description of
the instrument see Bame et al., 1978 (IEEE Transact. Geosci. Electron. GE-16,
216) and Bame et al., 1993 (Rev. Sci. Inst., 64, 1026). Remarks about the
computation of the moments may be found in Paschmann et al., 1978 (Space Sci.
Rev. 22, 717). 
The moments were computed for three 'species', but only the ion moments are
included here: lop (low-ener. ions, ~1eV/e-~130eV/e); hip (hi-ener. ions,
~130eV/e-~45keV/e); alle (electrons, ~30eV - ~45keV). The moments are computed
after the fluxes are corrected for background and s/c potential. Algorithms for
these corrections are relatively unsophisticated, so the moments are suspect
during times of high background and/or high spacecraft potential. Because the
determined spacecraft potential is not very precise, the magnitude of the
low-energy ion flow velocity is probably not accurate, but the flow direction is
well determined.  Tperp and Tpara are obtained from diagonalization of the 
3-dimensional temperature matrix, with the parallel direction assigned to the
eigenvalue which is most different from the other two. The corresponding
eigenvector is the symmetry axis of the distribution and should be equivalent to
the magnetic field direction. The eigenvalue ratio Tperp/Tmid, which is provided
for each species, is a measure of the symmetry of the distribution and should be
~1.0 for a good determination. Several of  the parameters have a fairly high
daily dynamic range and for survey purposes are best displayed logarithmically.
These parameters are indicated by a 'SCALETYP' value of 'linear' in this file. A
quality Flag value of 1 indicates that the values are suspect because of
unreliable location info. 
Modification History
This is a revised version of the data; the PI team re-processed the data and
provided this replacement version in July 1986. 
 
Dataset in CDAWeb
Back to top
ISEE1_H2_FPE (spase://VMO/NumericalData/ISEE1/FPE/PT24S)
Description
These data are high temporal resolution solar wind ion moments derived from
measurements obtained by the Los Alamos X-Fan Solar Wind Ion Experiment (SWE) on
ISEE-1. The data cover the solar wind seasons for the spacecraft (roughly July
through December) from 1977 through 1983. The temporal resolution is 24 seconds
at high data rate and 48 seconds at low data rate. Among the parameters, the
flow azimuth is given in degrees, with 0 degrees corresponding to flow from the
sun [corrected for aberration] and positive azimuths corresponding to flow
toward dawn; flow latitude is in degrees, with positive latitudes corresponding
to flow toward the south; an alpha/proton fraction of 0.00 means no
determination was made. The data providers did not attempt to cross-calibrate
density values with those from other experiments. However, they expected that
density values will tend to be too low in later years because of detector
degradation. Cross-calibration using, for example, IMP-derived values would be a
useful exercise. Please note also that many of these measurements were obtained
within the foreshock region where the solar wind flow is affected by waves in
the foreshock. 
References: Los Alamos Magnetospheric Plasma Analyzer (MPA) [Bame et al., ISEE-1
and ISEE-2 fast plasma experiment and the ISEE-1 solar wind experiment, IEEE
Trans. Geosci. Electron., GE-16, 216, 1978];  Los Alamos Magnetospheric Plasma
Analyzer (MPA) [Bame et al., Magnetospheric plasma analyzer for spacecraft with
constrained resources, Rev. Sci. Instrum., 64, 1026 (1993)].
The moments are presented in s/c coordinates: the z-axis is aligned with 
the spin axis, which points radially toward the center of the Earth; 
the x-axis is in the plane containing the spacecraft spin axis and the spin 
axis of the Earth, with +X generally northward; and the y-axis points 
generally eastward. Polar angles are measured relative to the spin axis 
(+Z), and azimuthal angles are measured around the z-axis, with zero along 
the +X direction. The moments are computed after the fluxes are 
corrected for background and s/c potential. Algorithms for these corrections
 are relatively unsophisticated, so the moments are suspect during times of 
high background and/or high spacecraft potential. Because the determined  
spacecraft potential is not very precise, the magnitude of the low-energy 
ion flow velocity is probably not accurate, but the flow direction is well
determined.
Modification History
Electron time tags removed Mag Latitude added 
Local time added Post Gap flag added 
Ratio variables changed Modified SEP 1994 
Changes noted in mail message from M.Kessel 
New Dict keys added sep95 
Added new global attr. and variables from M.Kessel Oct 98
 
Dataset in CDAWeb
Back to top
ISEE1_PWI_SA
Description
The ISEE-1 and -2 Plasma Wave Investigation' D. A. Gurnett, F. L. Scarf, R. W.
Fredricks, and E. J. Smith, IEEE Transactions on Geoscience Electronics, Vol.
GE-16, p. 225-230, 1978.
 
Dataset in CDAWeb
Back to top
ISEE1_PWI_SA-RAPID-E
Description
The ISEE-1 and -2 Plasma Wave Investigation' D. A. Gurnett, F. L. Scarf, R. W.
Fredricks, and E. J. Smith, IEEE Transactions on Geoscience Electronics, Vol.
GE-16, p. 225-230, 1978.
 
Dataset in CDAWeb
Back to top
ISEE1_PWI_SFR-E
Description
The ISEE-1 and -2 Plasma Wave Investigation' D. A. Gurnett, F. L. Scarf, R. W.
Fredricks, and E. J. Smith, IEEE Transactions on Geoscience Electronics, Vol.
GE-16, p. 225-230, 1978.
 
Dataset in CDAWeb
Back to top
ISEE2_4SEC_MFI (spase://VMO/NumericalData/ISEE2/MAG/PT4S)
Description
C. T. Russell (IEEE Trans. Geoscience Electronics, GE-16, 239-242, 1978). This
publication is available online at
http://www-ssc.igpp.ucla.edu/personnel/russell/papers/ISEE_fluxgate/.
 
Dataset in CDAWeb
Back to top
ISEE2_60SEC_MFI (spase://VMO/NumericalData/ISEE2/MAG/PT1M)
Description
C. T. Russell (IEEE Trans. Geoscience Electronics, GE-16, 239-242, 1978). This
publication is available online at
http://www-ssc.igpp.ucla.edu/personnel/russell/papers/ISEE_fluxgate/.
 
Dataset in CDAWeb
Back to top
ISEE2_H1_FPE (spase://VMO/NumericalData/ISEE2/FPE/PT1M)
Description
Data coverage includes the region from 6 earth radii out to (but excluding) the
bow shock. The reasons for selecting this area of coverage are that the solar
wind ion distributions are too cold to be adequately resolved by this
instrument, and inside the region of 6 earth radii the fast plasma data would be
contaminated by the energetic particle background. 
The data are provided at a temporal resolution of approximately 60 seconds. They
represent moments of individual two-dimensional (2D) distributions obtained in
approximately 3 or approximately 6 seconds (see below). No time averaging over
longer intervals is involved; instead, the temporal resolution of the full data
set (approximately 3 / 6 / 12 s) was reduced to approximately 60 s. The UT given
indicates the start of the respective sampling interval. For a description of
the instrument see Bame et al., 1978 (IEEE Transact. Geosci. Electron. GE-16,
216) and Bame et al., 1993 (Rev. Sci. Inst., 64, 1026). Remarks about the
computation of the moments may be found in Paschmann et al., 1978 (Space Sci.
Rev. 22, 717). 
The moments were computed for three 'species', but only the ion moments are
included here: lop (low-ener. ions, ~1eV/e-~130eV/e); hip (hi-ener. ions,
~130eV/e-~45keV/e); alle (electrons, ~30eV - ~45keV). The moments are computed
after the fluxes are corrected for background and s/c potential. Algorithms for
these corrections are relatively unsophisticated, so the moments are suspect
during times of high background and/or high spacecraft potential. Because the
determined spacecraft potential is not very precise, the magnitude of the
low-energy ion flow velocity is probably not accurate, but the flow direction is
well determined.  Tperp and Tpara are obtained from diagonalization of the 
3-dimensional temperature matrix, with the parallel direction assigned to the
eigenvalue which is most different from the other two. The corresponding
eigenvector is the symmetry axis of the distribution and should be equivalent to
the magnetic field direction. The eigenvalue ratio Tperp/Tmid, which is provided
for each species, is a measure of the symmetry of the distribution and should be
~1.0 for a good determination. Several of  the parameters have a fairly high
daily dynamic range and for survey purposes are best displayed logarithmically.
These parameters are indicated by a 'SCALETYP' value of 'log' in this file. A
quality Flag value of 1 indicates that the values are suspect because of
unreliable location info. 
Modification History
This is a revised version of the data; the PI team re-processed the data and
provided this replacement version in July 1986. 
 
Dataset in CDAWeb
Back to top
ISS_27DAY-AVERAGES_AMS-02 (spase://VSPO/NumericalData/ISS/AMS-02/P27D)
Description
No TEXT global attribute value.
 
Dataset in CDAWeb
Back to top
ISS_DOSANL_TEPC
Description
TEPC serrial number = 1003
TEPC Analysis SoftwareVersion Number = 3.1 
 
Dataset in CDAWeb
Back to top
ISS_SP_FPMU
Description
ISS FPMU 1-sec Ionosphere Summary Wide Langmuir Probe (WLP) Density and Narrow
Langmuir Probe (NLP) Temperature Records
 
Dataset in CDAWeb
Back to top
IT_H0_MFI
Description
               Magnetic field measurements on the  Interball- Tail  satellites
are carried out by IZMIRAN and Space Research Institute RAS  (SRI)   
       since 1995.  Satellite has  the orbits  with  apogee 200000 (30 Re)  and
perigee 500 km. and provides measurements in the solar wind and in the different
       regions of the magnetosphere at the same time with Geotail, Polar and
Interbal-A working in the magnetosphere and  Wind, ACE in the solar wind. 
        Magnetic field measurements on-board the Interball  Tail Probe are
carried out by the FM-3I and MFI instruments. FM-3I consists of two flux-gate
       magnetometers M1 and  M2  covering two  different  ranges:  200  nT  and 
1000  nT.  The   M2 instrument is mostly  used to perform the  attitude 
       control of  the INTERBALL TAIL spacecraft.   M1 magnetometer data are
transmitted to the scientific SSNI  telemetry  system at rates  0.125-16
vectors/s
       depending on the instrument  operating mode. The magnetic field data from
the M2 magnetometer are transmitted at the  rate 1 vectors per 6 sec. to  the
       BNS attitude  control  system.  MFI magnetometer has the next parameters:
measured range 0.3-37.5 nT, frequency range 0-2  Hz, sampling rate  from 1/4
       to 8 measurements per second. FM-3 M2 magnetometer failed in February
1996, FM-3 M1 and MFI are working until now. 
                  Data presented here are the  combination of the data of all
magnetometers. First of all   FM-3 M1 data are used,  if they are absent, used
MFI data
       and if data of both magnetometer are absent, FM-3 M2 data presented. In
case of FM-3 M1 and MFI, data are averaged for 6 seconds intervals. 
Modification History
created CDF August 2000 by Mona Kessel, data provided by
Dr. Valery G. Petrov ZMIRAN, 
       Troitsk, Moscow region, 
       142092, Russia 
http://antares.izmiran.rssi.ru/projects/PROGNOZ-MF/
 
Dataset in CDAWeb
Back to top
IT_K0_AKR
Description
Radioemission flux measured in 100, 252, 500 kHz ranges, the passband 10 kHz.
Loop antenna with 1.5 m2 area is used.
Full description: http://www.iki.rssi.ru/interball.html 
Modification History
created May 1996
 
Dataset in CDAWeb
Back to top
IT_K0_COR
Description
No TEXT global attribute value.
Modification History
created July 1996
 
Dataset in CDAWeb
Back to top
IT_K0_ELE
Description
No TEXT global attribute value.
Modification History
created Mar 1996
 
Dataset in CDAWeb
Back to top
IT_K0_EPI
Description
No TEXT global attribute value.
Modification History
created Mar 1996
 
Dataset in CDAWeb
Back to top
IT_K0_ICD
Description
Count rate of H+, O+ ions in 2 min, three directions, (1-30 keV) Status flag
shows instrument mode.
Data description:  http://www.iki.rssi.ru/interball.html 
Modification History
created Feb 1996
 
Dataset in CDAWeb
Back to top
IT_K0_MFI
Description
No TEXT global attribute value.
Modification History
created Feb 1996
 
Dataset in CDAWeb
Back to top
IT_K0_VDP
Description
No TEXT global attribute value.
Modification History
created Feb 1997
 
Dataset in CDAWeb
Back to top
IT_K0_WAV
Description
Magnetic field averages and variance are computed from 4 Hz or 1 Hz data 
Mf1 magnetic field AC amplitudes are measured by fluxgate sensor.
Mf2 magnetic field AC amplitudes are measured by search-coil.
Mf3 plasma wave AC amplitudesare measured by Langmuir splitprobe.
Full description: http://www.iki.rssi.ru/interball.html 
Modification History
created Jan 1998
 
Dataset in CDAWeb
Back to top
IT_OR_DEF
Description
No TEXT global attribute value.
Modification History
created Mar 1996
 
Dataset in CDAWeb
Back to top
IT_OR_GIFWALK
Description
Pre-generated PWG plots
 
Dataset in CDAWeb
Back to top
NASA Logo -
	    nasa.gov