KPL/FK Parker Solar Probe Frames Kernel ======================================================================== This frames kernel contains the current set of coordinate frame definitions for the Parker Solar Probe spacecraft, structures, and science instruments. To be consistent with conventions prior to the mission name change from Solar Probe Plus (SPP) to Parker Solar Probe (PSP) in 2017, frame names and other text IDs are prefixed with the legacy acronym, SPP. Version and Date ======================================================================== The TEXT_KERNEL_ID stores version information of loaded project text kernels. Each entry associated with the keyword is a string that consists of four parts: the kernel name, version, entry date, and type. For example, the frames kernel might have an entry as follows: TEXT_KERNEL_ID += 'SPP_FRAMES V1.0.0 25-JUNE-2018 FK' | | | | | | | | KERNEL NAME <-------+ | | | | | V VERSION <------+ | KERNEL TYPE | V ENTRY DATE Parker Solar Probe Frames Kernel Version: \begindata TEXT_KERNEL_ID += 'SPP_FRAMES V2.1.0 2020-MAY-26 FK' NAIF_BODY_NAME += ( 'SPP' ) NAIF_BODY_CODE += ( -96 ) \begintext Version 2.1.0 -- May 26, 2020 -- Lillian Nguyen Added EPI-Hi frames. Version 2.0.0 -- Jan. 22, 2020 -- Lillian Nguyen Alexandra Matiella Novak Added SWEAP SPAN-A Ion, SPAN-A Electron, SPAN-B, and SPC frames. Version 1.0.0 -- Dec. 18, 2018 -- Lillian Nguyen Scott Turner Alexandra Matiella Novak Added EPI-Lo frames. Added WISPR frames. Added NAIF body name to ID mapping for the spacecraft. Added comments (references, frame table, frame tree, etc.) Version 0.0.1 -- May 12, 2017 -- Wen-Jong Shyong Spacecraft, high gain antenna, and solar panel frames. References ======================================================================== 1. 'Frames Required Reading' 2. 'Kernel Pool Required Reading' 3. 'C-Kernel Required Reading' 4. 'SPP_ISIS_EPI_lo_mechanical_ICD_7464-0008.pdf', received from Matt Hill, JHU/APL 5. 'EPI_Lo_collimators_FOV_mechanical_SteveLayman_drawings_pathlength_SSD_ foil_distances_angles_for_GEANT_7464-matt-hill_b.pdf', received from Matt Hill, JHU/APL 6. 'EPI-Lo_wedge_aperture_naming_orientation_2016_11_18.pptx', received from Matt Hill, JHU/APL 7. '7434-0011.pdf', from JHU/APL engineering database PLM Windchill 8. '16105 1001 EM ISIS MICD 14-08-13 Rev-.pdf', received from Alexandra Dupont, JHU/APL 9. 'EPI LO FOV.pptx', received from Steve Layman, JHU/APL 10. 'epiLO.xlsx', received from Chris Choi, JHU/APL 11. 'EPI_LO_FOV_2014_07_29_2014_09_09.xlsx', received from Matt Hill, JHU/APL 12. Email from Martha Kusterer regarding frame IDs, received 2/7/2018. 13. '7434-9056_Rev_D.pdf', received from Martha Kusterer on 5/29/2018. 14. Email from Roberto Livi confirming SWEAP FOVs as described in Appendix A of [13], received 7/13/2018. 15. Frames kernel spp_v004.tf, having SPICE TEXT_KERNEL_ID 'SPP V0.0.4 26-JUL-2016 FK', received from Angelos Vourlidas on 5/29/2018 16. 'PSPalignment020718-v29b.pptx', received from Chris Choi 5/29/2018. 17. 'spp_001.tf', received 9/12/18 from Wen-Jong Shyong 18. Email from Angelos Vourlidas containing updates boresights, received 9/11/18. 19. 'PSP Kernel Review EPI-Lo WISPR.pptx', Lillian Nguyen 12/12/2018 20. 'Planar_Angle_Study_2018-08-08.png' and photos of EPI-Hi 3D CAD model with labels indicating the Y axis direction, received from Mark Wiedenbeck 11/29/2018. 21. 'Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation', McComas D.J., Alexander N., ..., (2016) Space Science Reviews, 204 (1-4), pp. 187-256. Contact Information ======================================================================== Lillian Nguyen, JHU/APL, (443)778-5477, Lillian.Nguyen@jhuapl.edu Scott Turner, JHU/APL (443)778-1693, Scott.Turner@jhuapl.edu M. Alexandra Matiella Novak, JHU/APL, (443)802-1417, Alexandra.Matiella.Novak@jhuapl.edu Wen-Jong Shyong, JHU/APL (443)778-8564, Wen-Jong.Shyong@jhuapl.edu Implementation Notes ======================================================================== This file is used by the SPICE system as follows: programs that make use of this frame kernel must `load' the kernel, normally during program initialization. Loading the kernel associates the data items with their names in a data structure called the `kernel pool'. The SPICELIB routine FURNSH loads a kernel into the pool as shown below: FORTRAN: (SPICELIB) CALL FURNSH ( frame_kernel_name ) C: (CSPICE) furnsh_c ( frame_kernel_name ); IDL: (ICY) cspice_furnsh, frame_kernel_name MATLAB: (MICE) cspice_furnsh ( frame_kernel_name ) This file was created and may be updated with a text editor or word processor. SPP Frames ======================================================================== The ID codes -96900 to -96999 have been reserved for the Parker Solar Probe dynamics frames kernel [12] and are not utilized in this file. The following frames are defined in this kernel file: Frame Name Relative To Type NAIF ID ======================= =================== ======= ======= Spacecraft Frames: ------------------ SPP_SPACECRAFT J2000 CK -96000 Solar Array Frames: ------------------- SPP_SOLARPANEL_PLUS SPP_SPACECRAFT CK -96001 SPP_SP_PLUS_BASE SPP_SPACECRAFT FIXED -96011 SPP_SOLARPANEL_MINUS SPP_SPACECRAFT CK -96002 SPP_SP_MINUS_BASE SPP_SPACECRAFT FIXED -96012 Antenna Frames: --------------- SPP_HIGH_GAIN_ANTENNA SPP_SPACECRAFT CK -96003 SPP_HGA_BASE SPP_SPACECRAFT FIXED -96013 Spacecraft Deck Frames: ----------------------- SPP_DECK_1 SPP_SPACECRAFT FIXED -96081 SPP_DECK_2 SPP_SPACECRAFT FIXED -96082 SPP_DECK_3 SPP_SPACECRAFT FIXED -96083 SPP_DECK_4 SPP_SPACECRAFT FIXED -96084 SPP_DECK_5 SPP_SPACECRAFT FIXED -96085 SPP_DECK_6 SPP_SPACECRAFT FIXED -96086 WISPR Frames: ------------- SPP_WISPR_INNER SPP_SPACECRAFT FIXED -96100 SPP_WISPR_OUTER SPP_SPACECRAFT FIXED -96120 SWEAP Frames: ------------- SPP_SWEAP_SPAN_A_ION SPP_SPACECRAFT FIXED -96201 SPP_SWEAP_SPAN_A_ELECTRON SPP_SPACECRAFT FIXED -96202 SPP_SWEAP_SPAN_B SPP_SPACECRAFT FIXED -96203 SPP_SWEAP_SPC SPP_SPACECRAFT FIXED -96204 FIELDS Frames (TBD): -------------------- ID codes -96300 to -96399 ISOIS EPI-Lo Frames: -------------------- SPP_EPILO_BASE SPP_DECK_1 FIXED -96401 SPP_EPILO_W0 SPP_EPILO_BASE FIXED -96411 SPP_EPILO_L00 SPP_EPILO_W0 FIXED -96412 SPP_EPILO_L01 SPP_EPILO_W0 FIXED -96413 SPP_EPILO_L02 SPP_EPILO_W0 FIXED -96414 SPP_EPILO_L03 SPP_EPILO_W0 FIXED -96415 SPP_EPILO_L04 SPP_EPILO_W0 FIXED -96416 SPP_EPILO_L05 SPP_EPILO_W0 FIXED -96417 SPP_EPILO_L06 SPP_EPILO_W0 FIXED -96418 SPP_EPILO_L07 SPP_EPILO_W0 FIXED -96419 SPP_EPILO_L08 SPP_EPILO_W0 FIXED -96420 SPP_EPILO_L09 SPP_EPILO_W0 FIXED -96421 SPP_EPILO_W1 SPP_EPILO_BASE FIXED -96422 SPP_EPILO_L10 SPP_EPILO_W1 FIXED -96423 SPP_EPILO_L11 SPP_EPILO_W1 FIXED -96424 SPP_EPILO_L12 SPP_EPILO_W1 FIXED -96425 SPP_EPILO_L13 SPP_EPILO_W1 FIXED -96426 SPP_EPILO_L14 SPP_EPILO_W1 FIXED -96427 SPP_EPILO_L15 SPP_EPILO_W1 FIXED -96428 SPP_EPILO_L16 SPP_EPILO_W1 FIXED -96429 SPP_EPILO_L17 SPP_EPILO_W1 FIXED -96430 SPP_EPILO_L18 SPP_EPILO_W1 FIXED -96431 SPP_EPILO_L19 SPP_EPILO_W1 FIXED -96432 ... SPP_EPILO_W7 SPP_EPILO_BASE FIXED -96488 SPP_EPILO_L70 SPP_EPILO_W7 FIXED -96489 SPP_EPILO_L71 SPP_EPILO_W7 FIXED -96490 SPP_EPILO_L72 SPP_EPILO_W7 FIXED -96491 SPP_EPILO_L73 SPP_EPILO_W7 FIXED -96492 SPP_EPILO_L74 SPP_EPILO_W7 FIXED -96493 SPP_EPILO_L75 SPP_EPILO_W7 FIXED -96494 SPP_EPILO_L76 SPP_EPILO_W7 FIXED -96495 SPP_EPILO_L77 SPP_EPILO_W7 FIXED -96496 SPP_EPILO_L78 SPP_EPILO_W7 FIXED -96497 SPP_EPILO_L79 SPP_EPILO_W7 FIXED -96498 NOTE: ID codes -96400 through -96699 are reserved for EPI-Lo frames and fields of view. ISOIS EPI-Hi Frames: -------------------------- SPP_EPIHI_LET1A SPP_SPACECRAFT FIXED -96700 SPP_EPIHI_LET1B SPP_SPACECRAFT FIXED -96701 SPP_EPIHI_LET2C SPP_SPACECRAFT FIXED -96702 SPP_EPIHI_HETA SPP_SPACECRAFT FIXED -96703 SPP_EPIHI_HETB SPP_SPACECRAFT FIXED -96704 NOTE: ID codes -96700 through -96859 are reserved for EPI-Hi frames and fields of view. SPP Frame Tree ======================================================================== The diagram below illustrates the SPP frame hierarchy: J2000 | |<---ck | SPP_SPACECRAFT | SPP_SP_PLUS_BASE | |<---ck | SPP_SOLARPANEL_PLUS | SPP_SP_MINUS_BASE | |<---ck | SPP_SOLARPANEL_MINUS | SPP_HGA_BASE | |<---ck | SPP_HIGH_GAIN_ANTENNA | SPP_DECK_1 | | | SPP_EPILO_BASE | | | SPP_EPILO_W0 | | | | | SPP_EPILO_L00 | | | | | SPP_EPILO_L01 | | | | | ... | | SPP_EPILO_L09 | | | SPP_EPILO_W1 | | | | | SPP_EPILO_L10 | | | | | SPP_EPILO_L11 | | | | | ... | | SPP_EPILO_L19 | | | ... | SPP_EPILO_W7 | | | SPP_EPILO_L70 | | | SPP_EPILO_L71 | | | ... | SPP_EPILO_L79 | SPP_DECK_2 | SPP_DECK_3 | SPP_DECK_4 | SPP_DECK_5 | SPP_DECK_6 | SPP_SWEAP_SPAN_A_ION | SPP_SWEAP_SPAN_A_ELECTRON | SPP_SWEAP_SPAN_B | SPP_SWEAP_SPC | SPP_WISPR_INNER | SPP_WISPR_OUTER | SPP_EPIHI_LET1A | SPP_EPIHI_LET1B | SPP_EPIHI_LET2C | SPP_EPIHI_HETA | SPP_EPIHI_HETB Spacecraft Frames ======================================================================== The orientation of the spacecraft body frame with respect to an inertial frame, typically J2000, is provided by a C-kernel (see [3] for details). \begindata FRAME_SPP_SPACECRAFT = -96000 FRAME_-96000_NAME = 'SPP_SPACECRAFT' FRAME_-96000_CLASS = 3 FRAME_-96000_CLASS_ID = -96000 FRAME_-96000_CENTER = -96 CK_-96000_SCLK = -96 CK_-96000_SPK = -96 \begintext Solar Array Frames ======================================================================== Solar Array Reference Frames and Nominal Alignments [17] The default transformation matrix for the solar array frames to the S/C body frame for flap angle of 0 degree and feather angle of 0 degree is: [X] [ -1 0 0 ] [X] [Y] = [ 0 -1 0 ] [Y] [Z]S/C [ 0 0 1 ] [Z]+Y SA [X] [ 1 0 0 ] [X] [Y] = [ 0 1 0 ] [Y] [Z]S/C [ 0 0 1 ] [Z]-Y SA The orientation of the solar array frames with respect to an inertial frame, typically J2000, is provided by a C-kernel (see [3] for details). \begindata FRAME_SPP_SP_PLUS_BASE = -96011 FRAME_-96011_NAME = 'SPP_SP_PLUS_BASE' FRAME_-96011_CLASS = 4 FRAME_-96011_CLASS_ID = -96011 FRAME_-96011_CENTER = -96 TKFRAME_-96011_SPEC = 'MATRIX' TKFRAME_-96011_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96011_MATRIX = ( 1, 0, 0, 0, 1, 0, 0, 0, 1 ) FRAME_SPP_SOLARPANEL_PLUS = -96001 FRAME_-96001_NAME = 'SPP_SOLARPANEL_PLUS' FRAME_-96001_CLASS = 3 FRAME_-96001_CLASS_ID = -96001 FRAME_-96001_CENTER = -96 CK_-96001_SCLK = -96 CK_-96001_SPK = -96 FRAME_SPP_SP_MINUS_BASE = -96012 FRAME_-96012_NAME = 'SPP_SP_MINUS_BASE' FRAME_-96012_CLASS = 4 FRAME_-96012_CLASS_ID = -96012 FRAME_-96012_CENTER = -96 TKFRAME_-96012_SPEC = 'MATRIX' TKFRAME_-96012_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96012_MATRIX = ( 1, 0, 0, 0, 1, 0, 0, 0, 1 ) FRAME_SPP_SOLARPANEL_MINUS = -96002 FRAME_-96002_NAME = 'SPP_SOLARPANEL_MINUS' FRAME_-96002_CLASS = 3 FRAME_-96002_CLASS_ID = -96002 FRAME_-96002_CENTER = -96 CK_-96002_SCLK = -96 CK_-96002_SPK = -96 \begintext Antenna Frames ======================================================================== High-Gain Antenna Nominal Alignment [17] The HGA reference axis is nominally the spacecraft -Y axis. The reference angle is nominally 90 degree and the reference axis is nominally the sapcecraft -X axis. [X] [ 0 0 -1 ] [X] [Y] = [ 0 -1 0 ] [Y] [Z]S/C [ -1 0 0 ] [Z]HGA A more general representation of the transormation for a specified rotation angle about the gimbal axis is: [X] [ -cos(s) 0 -sin(s) ] [X] [Y] = [ 0 -1 0 ] [Y] [Z]S/C [ -sin(s) 0 cos(s) ] [Z]HGA where s varires between 45 degree and 135 degree as the antenna rotates about the -Y axis. The orientation of the high gain antenna frame with respect to an inertial frame, typically J2000, is provided by a C-kernel (see [3] for details). \begindata FRAME_SPP_HGA_BASE = -96013 FRAME_-96013_NAME = 'SPP_HGA_BASE' FRAME_-96013_CLASS = 4 FRAME_-96013_CLASS_ID = -96013 FRAME_-96013_CENTER = -96 TKFRAME_-96013_SPEC = 'MATRIX' TKFRAME_-96013_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96013_MATRIX = ( 1, 0, 0, 0, 1, 0, 0, 0, 1 ) FRAME_SPP_HIGH_GAIN_ANTENNA = -96003 FRAME_-96003_NAME = 'SPP_HIGH_GAIN_ANTENNA' FRAME_-96003_CLASS = 3 FRAME_-96003_CLASS_ID = -96003 FRAME_-96003_CENTER = -96 CK_-96003_SCLK = -96 CK_-96003_SPK = -96 \begintext Deck Frames =========================================================================== The shape of the spacecraft bus is a hexagonal prism [7]. Defined here are frames for each of the six panels, or spacecraft decks. Including frames for the spacecraft decks simplify the nominal frame definitions for some instruments. The decks are numbered arbitrarily from 1 to 6, beginning with the deck in the first quadrant of the spacecraft XY plane and increasing clockwise as viewed looking up the spacecraft +Z axis. The deck numbering is illustrated below. X sc ^ | deck 6 . '|' . deck 1 . ' | ' . ' | ' ' -. | .- ' deck 5 | `- . | .- ' | deck 2 <------------------x-------------------> Y | . -' | `- . | sc .-' | `- . ' | ' ' . | . ` deck 4 '.|. ' deck 3 | v Defined below for each deck is a coordinate system that has its +Z axis aligned with the spacecraft +Z axis, and the outward pointing normal to the deck as its +X axis. The rotation matrices taking vectors from the deck frames to the spacecraft frame are defined below. \begindata FRAME_SPP_DECK_1 = -96081 FRAME_-96081_NAME = 'SPP_DECK_1' FRAME_-96081_CLASS = 4 FRAME_-96081_CLASS_ID = -96081 FRAME_-96081_CENTER = -96 TKFRAME_-96081_SPEC = 'MATRIX' TKFRAME_-96081_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96081_MATRIX = ( 0.866025403784 0.5 0.0 -0.5 0.866025403784 0.0 0.0 0.0 1.0 ) FRAME_SPP_DECK_2 = -96082 FRAME_-96082_NAME = 'SPP_DECK_2' FRAME_-96082_CLASS = 4 FRAME_-96082_CLASS_ID = -96082 FRAME_-96082_CENTER = -96 TKFRAME_-96082_SPEC = 'MATRIX' TKFRAME_-96082_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96082_MATRIX = ( 0.0 1.0 0.0 -1.0 0.0 0.0 0.0 0.0 1.0 ) FRAME_SPP_DECK_3 = -96083 FRAME_-96083_NAME = 'SPP_DECK_3' FRAME_-96083_CLASS = 4 FRAME_-96083_CLASS_ID = -96083 FRAME_-96083_CENTER = -96 TKFRAME_-96083_SPEC = 'MATRIX' TKFRAME_-96083_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96083_MATRIX = ( -0.866025403784 0.5 0.0 -0.5 -0.866025403784 0.0 0.0 0.0 1.0 ) FRAME_SPP_DECK_4 = -96084 FRAME_-96084_NAME = 'SPP_DECK_4' FRAME_-96084_CLASS = 4 FRAME_-96084_CLASS_ID = -96084 FRAME_-96084_CENTER = -96 TKFRAME_-96084_SPEC = 'MATRIX' TKFRAME_-96084_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96084_MATRIX = ( -0.866025403784 -0.5 0.0 0.5 -0.866025403784 0.0 0.0 0.0 1.0 ) FRAME_SPP_DECK_5 = -96085 FRAME_-96085_NAME = 'SPP_DECK_5' FRAME_-96085_CLASS = 4 FRAME_-96085_CLASS_ID = -96085 FRAME_-96085_CENTER = -96 TKFRAME_-96085_SPEC = 'MATRIX' TKFRAME_-96085_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96085_MATRIX = ( 0.0 -1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 ) FRAME_SPP_DECK_6 = -96086 FRAME_-96086_NAME = 'SPP_DECK_6' FRAME_-96086_CLASS = 4 FRAME_-96086_CLASS_ID = -96086 FRAME_-96086_CENTER = -96 TKFRAME_-96086_SPEC = 'MATRIX' TKFRAME_-96086_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96086_MATRIX = ( 0.866025403784 -0.5 0.0 0.5 0.866025403784 0.0 0.0 0.0 1.0 ) \begintext WISPR Frames =========================================================================== From [15]: WISPR consists of two different telescopes that have slightly overlapping fields of view. The current implementation of these define these two frames as independently connected to the SPP_SPACECRAFT frame, but this can be altered as needed if in practice one is calibrated relative to the other. The axes of each of the two WISPR frames are as follows: Z-axis is the boresight of the telescope (vector pointing out of the telescope along its line of sight) Y-axis is the normal to the plane containing both camera boresights. X-axis completes the right handed system. WISPR Inner Telescope Boresight (instrument Z axis): The nominal boresight [15] of this detector is 32.2 degrees off the SPP_SPACECRAFT +Z-axis towards the spacecraft +X-axis (ram direction in encounter orientation). It is inclined 10 degrees out of the ecliptic "southward" in the encounter orientation. "Southward" is along the Y-axis nominally, so this translates into a boresight vector in the spacecraft frame of: [ cos(10.0)*sin(32.2) ] = [ 0.52478068807072864 ] Z_Inner = [ sin(10.0) ] = [ 0.17364817766693033 ] [ cos(10.0)*cos(32.2) ] = [ 0.83333759054837242 ] [18] provides an update to this nominal boresight, normalized here: [ 0.53806848033103727 ] Z_Inner = [ 0.08578895005278017 ] [ 0.83852404051588747 ] WISPR Outer Telescope Boresight (instrument Z axis): The nominal boresight [15] of this detector is 77.0 degrees off the SPP_SPACECRAFT +Z-axis towards the spacecraft +X-axis (ram direction in encounter orientation). It is inclined 10 degrees out of the ecliptic "southward" in the encounter orientation. "Southward" is along the Y-axis nominally, so this translates into a boresight vector in the spacecraft frame of: [ cos(10.0)*sin(77.0) ] = [ 0.95956719410350710 ] Z_Outer = [ sin(10.0) ] = [ 0.17364817766693033 ] [ cos(10.0)*cos(77.0) ] = [ 0.22153354236610870 ] [18] provides an update to this nominal boresight, normalized here: [ 0.96022820172582790 ] Z_Outer = [ 0.16541537029730274 ] [ 0.22494345040429314 ] WISPR Inner and Outer Telescope X and Y axes The Y-axis for both cameras is the the normal to the updated Inner and Outer Telescope boresights. This is accomplished with the cross product: [ -0.17192917141267056 ] Y = Z_Inner x Z_Outer = [ 0.98506308873062820 ] [ 0.00954312516039215 ] The X-axis completes the right handed frame: X_Inner = Y x Z_Inner X_Outer = Y x Z_Outer WISPR Inner Telescope Frame (SPP_WISPR_INNER): The resultant rotation from the inner telescope frame to the spacecraft is then: [ X_Inner Y Z_Inner ] = [ 0.82518038663773430 -0.17192917141267056 0.53806848033103727 ] [ 0.14930159834816223 0.98506308873062820 0.08578895005278017 ] [ -0.54478102228242442 0.00954312516039215 0.83852404051588747 ] And the corresponding frame definition: \begindata FRAME_SPP_WISPR_INNER = -96100 FRAME_-96100_NAME = 'SPP_WISPR_INNER' FRAME_-96100_CLASS = 4 FRAME_-96100_CLASS_ID = -96100 FRAME_-96100_CENTER = 'SPP' TKFRAME_-96100_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96100_SPEC = 'MATRIX' TKFRAME_-96100_MATRIX = ( 0.82518038663773430 0.14930159834816223 -0.54478102228242442 -0.17192917141267056 0.98506308873062820 0.00954312516039215 0.53806848033103727 0.08578895005278017 0.83852404051588747 ) \begintext WISPR Outer Telescope Frame (SPP_WISPR_OUTER): The resultant rotation from the outer telescope frame to the spacecraft is then: [ X_Outer Y Z_Outer ] = [ 0.22000491046277809 -0.17192917141267056 0.96022820172582790 ] [ 0.04783791895432513 0.98506308873062820 0.16541537029730274 ] [ -0.97432508583243616 0.00954312516039215 0.22494345040429314 ] And the corresponding frame definition: \begindata FRAME_SPP_WISPR_OUTER = -96120 FRAME_-96120_NAME = 'SPP_WISPR_OUTER' FRAME_-96120_CLASS = 4 FRAME_-96120_CLASS_ID = -96120 FRAME_-96120_CENTER = 'SPP' TKFRAME_-96120_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96120_SPEC = 'MATRIX' TKFRAME_-96120_MATRIX = ( 0.22000491046277809 0.04783791895432513 -0.97432508583243616 -0.17192917141267056 0.98506308873062820 0.00954312516039215 0.96022820172582790 0.16541537029730274 0.22494345040429314 ) \begintext SWEAP Frames =========================================================================== SPAN-A ====== SPAN-A is mounted on a pedestal that is tilted 10 degrees about the spacecraft +Z axis [13] off the plane of spacecraft deck 6 (see the 'Deck Frames' section of this document), as illustrated below. SPAN-A consists of two instruments, an Electron Analyzer and Ion Analyzer, each of which has its own coordinate system definition. SPAN-A SPAN-A Electron Ion Analyzer Analyzer .------.------------.------. Electron | | | | Ion Analyzer <----| | | |----> Analyzer normal | | | | normal '------' '------' | | ---.----|------------| __..--'' / | pedestal_..--'' 10 deg ( |__..--''\ deck 6 _\..--'' | spacecraft +Z axis --''...___ | 30 deg is into the page ```---..._/_ ```---...___ ```---> Y sc [16] gives the measured normal vector to the outward-pointed circular face of each end of the instrument in spacecraft coordinates. This measured normal vector defines the instrument +Y axis and is given below for each SPAN-A detector. Ion Analyzer normal: [ 0.342126 0.939651 -0.00238 ] Electron Analyzer normal: [-0.34134 -0.93994 0.001893 ] The instrument coordinate system for each SPAN-A detector is defined such that: +Y is the measured normal +Z is the look direction (the outward pointing vector at the geometric center of the instrument field of view) +X completes the right-handed frame. For each detector we determine the nominal look direction from engineering drawings [7,13], then assemble a rotation matrix M taking vectors from the instrument frame to the spacecraft frame using the cross product with the measured normal: Y = measured normal Z = nominal look direction X = Y x Z Z = X x Y (Z is adjusted to form an orthonormal basis) [ ] M = [ X Y Z ] where X, Y, and Z are column vectors, and [ ] v = M * v sc instrument The calculation to determine the nominal look direction differs for the two analyzers and is described in the sections below. SPAN-A Ion Analyzer ------------------- The SPAN-A Ion Analyzer field of view is 247.5 deg in azimuth, illustrated below in a view looking down the nominal instrument +Y axis [13,14]. _ +Z |\ ion \ \ __.__ .\'' ``-. .' \ `. ' \ ' / \ \ . \ . | o------------------------> 247.5 deg / +Y spacecraft +Z \ / ion `. / (out of page) `. / / / In the diagram above, we see that the nominal Ion +Z axis is determined by rotating the spacecraft +Z axis by 247.5/2 degrees about the nominal Ion +Y axis. From the SPAN-A mounting diagram at top, the nominal Ion +Y axis is a -20 degree rotation of the spacecraft +Y axis about the spacecraft +Z axis. The rotation matrix taking vectors from the SPAN-A Ion Analyzer frame to the spacecraft frame is determined using the cross products as described above and is captured in the frame definition below. \begindata FRAME_SPP_SWEAP_SPAN_A_ION = -96201 FRAME_-96201_NAME = 'SPP_SWEAP_SPAN_A_ION' FRAME_-96201_CLASS = 4 FRAME_-96201_CLASS_ID = -96201 FRAME_-96201_CENTER = -96 TKFRAME_-96201_SPEC = 'MATRIX' TKFRAME_-96201_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96201_MATRIX = ( -0.522719507531277 0.188215667505974 -0.831468086550254 0.342126022909272 0.939651062920447 -0.002380000159368 0.780841917992716 -0.285710942138650 -0.555567418634049 ) \begintext SPAN-A Electron Analyzer ------------------------ The SPAN-A Electron Analyzer field of view is 240 deg in azimuth, illustrated below in a view looking down the nominal instrument +Y axis [13,14]. _ +Z __.__ .'| electron .-'' ``-. .' __ .' `. ''--..__ ' .' ' 6 deg / ''--../_ .' \ | ''--..__ .' 240 deg <---------'------------------o | spacecraft +Z +Y \ ' electron / (out of page), \ ,' \` \ \ In the diagram above, we see that the nominal Electron +Z axis is determined by rotating the spacecraft +Z axis by -(240/2 + 6) degrees about the nominal Electron +Y axis. From the SPAN-A mounting diagram at top, the nominal Electron +Y axis is a 160 degree rotation of the spacecraft +Y axis about the spacecraft +Z axis. The rotation matrix taking vectors from the SPAN-A Electron Analyzer frame to the spacecraft frame is determined using the cross products as described above and is captured in the frame definition below. \begindata FRAME_SPP_SWEAP_SPAN_A_ELECTRON = -96202 FRAME_-96202_NAME = 'SPP_SWEAP_SPAN_A_ELECTRON' FRAME_-96202_CLASS = 4 FRAME_-96202_CLASS_ID = -96202 FRAME_-96202_CENTER = -96 TKFRAME_-96202_SPEC = 'MATRIX' TKFRAME_-96202_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96202_MATRIX = ( 0.553005694273252 -0.199195158675160 0.809015445378972 -0.341339354417127 -0.939938222273493 0.001892996419733 0.760047463799108 -0.277195647638494 -0.587784336047516 ) \begintext SPAN-B ====== [16] gives the measured normal vector to the circular face of the instrument in spacecraft coordinates: SPAN-B measured normal: [ 0.498132 -0.00362 0.867094 ] The instrument coordinate system for SPAN-B is defined such that: +X is the measured normal +Z is the look direction (the outward pointing vector at the geometric center of the 240 deg x 120 deg field of view) +Y completes the right-handed frame. The determination of the instrument +Z axis is described below. SPAN-B is mounted to spacecraft deck 3 (see the 'Deck Frames' section of this document) by a pedestal made up of two 30 degree wedges [13]. Wedge 1, mounted to deck 3, is nominally rotated 30 degrees about spacecraft +Z and exactly offsets the 30 degree tilt of the deck. This puts the plane of the face where the two wedges meet parallel to the spacecraft YZ plane [7]. __.. Wedge 1 __..--'' X deck 3 __..--'' | ^ sc __..--''\ | | __..--'' | 30 deg | | __..--''-----------------'---------' x-----> Y '' face where wedges meet sc Wedge 2 provides a nominal rotation of 30 degrees about spacecraft +Y [7, 13]. This tilts the instrument +X axis towards the body of the spacecraft. Wedge 2 X face where wedges meet ^ sc X ..---------.----------. | spanB ``--..__.' 30 deg | | -._ ``--..__ | <-----x `-o / `/--. Z / spanB +X `-._ /`-./ / sc / `/ / / Z / / / spanB `-. / / / '-._/ / spanB +Z The SPAN-B field of view is 240 deg in azimuth, illustrated below in a view looking down the nominal instrument +X axis [13]. Z ^ spanB | | __|__ +X is out of the page .-'' | ``-. spanB .' | `. ' | ' / | \ . | 240 deg | o----------|----------> spacecraft +Y ' . | . ' \ . ' | ' . / . ' | ' . . ' | ' | | From the diagrams above, the nominal instrument +Z axis is the spacecraft -X axis rotated 30 degrees about spacecraft +Y. The rotation matrix M, taking vectors from the SPAN-B frame to the spacecraft frame, is assembled in the same manner as the SPAN-A matrix and captured in the frame definition below. X = SPAN-B measured normal Z = [ -cos(30), 0, sin(30) ] Y = Z x X Z = X x Y (Z is adjusted to form an orthonormal basis) [ ] M = [ X Y Z ] where X, Y, and Z are column vectors. [ ] \begindata FRAME_SPP_SWEAP_SPAN_B = -96203 FRAME_-96203_NAME = 'SPP_SWEAP_SPAN_B' FRAME_-96203_CLASS = 4 FRAME_-96203_CLASS_ID = -96203 FRAME_-96203_CENTER = -96 TKFRAME_-96203_SPEC = 'MATRIX' TKFRAME_-96203_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96203_MATRIX = ( 0.498131850894215 -0.003619998916426 0.867093740452869 0.001810003649504 0.999993447752111 0.003135018282825 -0.867099407802526 0.000007790374870 0.498135139222097 ) \begintext The SWEAP SPC frame is nominally the spacecraft frame [13]. \begindata FRAME_SPP_SWEAP_SPC = -96204 FRAME_-96204_NAME = 'SPP_SWEAP_SPC' FRAME_-96204_CLASS = 4 FRAME_-96204_CLASS_ID = -96204 FRAME_-96204_CENTER = -96 TKFRAME_-96204_SPEC = 'MATRIX' TKFRAME_-96204_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96204_MATRIX = ( 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ) \begintext FIELDS Frames =========================================================================== TBD EPI-Lo Frames =========================================================================== [19] describes in detail the EPI-Lo frame determination discussed in the following sections. EPI-Lo Frame Naming and Numbering Convention ------------------------------------------------------------------------ EPI-Lo has 8 octants, or wedges, each having 10 apertures, for a total of 80 apertures. Each wedge and each aperture has its own frame defined below. Frame Naming: [6] shows the wedge and aperture locations in the instrument. The eight wedges are named W0 - W7. The ten apertures in a wedge are named L#0 - L#9, where # is the wedge number, to give eighty unique names L00 - L79 for the apertures. Frame Numbering: Each wedge frame is assigned the NAIF ID -964##, where ## is the corresponding double digit number listed below. Wedge 0 has number 11 Wedge 1 has number 22 Wedge 2 has number 33 Wedge 3 has number 44 Wedge 4 has number 55 Wedge 5 has number 66 Wedge 6 has number 77 Wedge 7 has number 88 The aperture frames are also assigned NAIF IDs -964##, where ## is incremented from the NAIF ID of the containing wedge. Thus, Wedge 0 apertures L00-L09 have numbers 12-21 Wedge 1 apertures L10-L19 have numbers 23-32 Wedge 2 apertures L20-L29 have numbers 34-43 Wedge 3 apertures L30-L39 have numbers 45-54 Wedge 4 apertures L40-L49 have numbers 56-65 Wedge 5 apertures L50-L59 have numbers 67-76 Wedge 6 apertures L60-L69 have numbers 78-87 Wedge 7 apertures L70-L79 have numbers 89-98 EPI-Lo Mounting Alignment Frame ------------------------------------------------------------------------ From page 17 of [7] we see that EPI-Lo is mounted onto spacecraft deck 1 by a bracket. The deck 1 orientation is described in the Spacecraft Frames section of this document, and the bracket orientation is described on sheet 2 of [8]. The rotation taking vectors from the instrument base frame to the deck 1 frame is captured below. The instrument base coordinate system is defined in [4]. There, the instrument +Z axis points outward from the center of symmetry of the instrument and is normal to the instrument base, or mounting face. By comparing the location of the connectors in that drawing with those on page 2 of [6], the instrument +X axis lies in the plane of the instrument base and points outward from the center of the instrument between wedges W6 and W7. The instrument +Y axis lies in the plane of the instrument base and points outward from the center of the instrument between wedges W4 and W5. The following diagram illustrates the base frame. Y base View looking down on the ^ instrument (apertures point | out of the plane of the , W4 | W5 . page toward the viewer) , | . , | . W3 ,|. W6 -----------o-----------> X W2 '|` W7 base ' | ` ' | ` ' W1 | W0 ` | From the mounting bracket drawing in [8], the instrument mounting face is a 13.35 degree rotation about the +Y axis of deck 1, and a -9.70 degree rotation about the +Z axis of deck 1. We determine the normal to the mounting face by taking the cross product of two orthogonal vectors lying in the plane of the mounting face. This normal vector is the instrument base frame's +Z axis. The diagram further shows a twist about the base frame's Z axis. This nominal twist was adjusted to align the L12, L30, L31, L51, and L52 apertures to their pre-environmental measured positions given in [10]. The The rotation described above taking vectors from the SPP_EPILO_BASE frame to the SPP_DECK_1 frame is given below. \begindata FRAME_SPP_EPILO_BASE = -96401 FRAME_-96401_NAME = 'SPP_EPILO_BASE' FRAME_-96401_CLASS = 4 FRAME_-96401_CLASS_ID = -96401 FRAME_-96401_CENTER = -96 TKFRAME_-96401_SPEC = 'MATRIX' TKFRAME_-96401_RELATIVE = 'SPP_DECK_1' TKFRAME_-96401_MATRIX = ( -0.12716527279986342 0.4692559064526792 -0.873858047770352 0.2502482446581486 0.8676883125456071 0.42952626033488644 0.9597941495129318 -0.16406061846473613 -0.22777028785536657) \begintext EPI-Lo Wedge Frames ------------------------------------------------------------------------ Each wedge frame is defined such that +Z axis is in the mounting plane of the instrument and points outward from the center of the instrument along the azimuthal center line of the wedge. The wedge +Y axis is normal to the mounting plane and points outward from the center of the instrument to the side containing the instrument apertures (i.e. each wedge has its +Y axis aligned with SPP_EPILO_BASE's +Z axis). The wedge frame is illustrated below. Looking crosswise through the wedge: Y wedge ^ | | \`` '|- - . \ | ` - \ | ` - \ | `. \|_________________\----> Z wedge Looking down on the wedge (apertures point out of the plane of the page toward the viewer): X wedge ^ | | .'| | .' | | .' | | .'`. 45/2 deg | | .' ` | |.'_________'__________|_____\ Z `. | / wedge `. | `. | `. | `. | `.| As there are 8 wedges, each wedge's +Z axis is 45 degrees apart from its neighbor's. The matrices taking vectors from the wedge frames to the SPP_EPILO_BASE frame are described below. \begindata FRAME_SPP_EPILO_W0 = -96411 FRAME_-96411_NAME = 'SPP_EPILO_W0' FRAME_-96411_CLASS = 4 FRAME_-96411_CLASS_ID = -96411 FRAME_-96411_CENTER = -96 TKFRAME_-96411_SPEC = 'MATRIX' TKFRAME_-96411_RELATIVE = 'SPP_EPILO_BASE' TKFRAME_-96411_MATRIX = (0.9238795325112866 0.38268343236509 0 0 0 1 0.38268343236509 -0.9238795325112866 0) FRAME_SPP_EPILO_W1 = -96422 FRAME_-96422_NAME = 'SPP_EPILO_W1' FRAME_-96422_CLASS = 4 FRAME_-96422_CLASS_ID = -96422 FRAME_-96422_CENTER = -96 TKFRAME_-96422_SPEC = 'MATRIX' TKFRAME_-96422_RELATIVE = 'SPP_EPILO_BASE' TKFRAME_-96422_MATRIX = (0.9238795325112865 -0.38268343236509034 0 0 0 1 -0.38268343236509034 -0.9238795325112865 0) FRAME_SPP_EPILO_W2 = -96433 FRAME_-96433_NAME = 'SPP_EPILO_W2' FRAME_-96433_CLASS = 4 FRAME_-96433_CLASS_ID = -96433 FRAME_-96433_CENTER = -96 TKFRAME_-96433_SPEC = 'MATRIX' TKFRAME_-96433_RELATIVE = 'SPP_EPILO_BASE' TKFRAME_-96433_MATRIX = (0.38268343236508967 -0.9238795325112868 0 0 0 1 -0.9238795325112868 -0.38268343236508967 0) FRAME_SPP_EPILO_W3 = -96444 FRAME_-96444_NAME = 'SPP_EPILO_W3' FRAME_-96444_CLASS = 4 FRAME_-96444_CLASS_ID = -96444 FRAME_-96444_CENTER = -96 TKFRAME_-96444_SPEC = 'MATRIX' TKFRAME_-96444_RELATIVE = 'SPP_EPILO_BASE' TKFRAME_-96444_MATRIX = (-0.3826834323650899 -0.9238795325112867 0 0 0 1 -0.9238795325112867 0.3826834323650899 0) FRAME_SPP_EPILO_W4 = -96455 FRAME_-96455_NAME = 'SPP_EPILO_W4' FRAME_-96455_CLASS = 4 FRAME_-96455_CLASS_ID = -96455 FRAME_-96455_CENTER = -96 TKFRAME_-96455_SPEC = 'MATRIX' TKFRAME_-96455_RELATIVE = 'SPP_EPILO_BASE' TKFRAME_-96455_MATRIX = (-0.9238795325112867 -0.3826834323650897 0 0 0 1 -0.3826834323650897 0.9238795325112867 0) FRAME_SPP_EPILO_W5 = -96466 FRAME_-96466_NAME = 'SPP_EPILO_W5' FRAME_-96466_CLASS = 4 FRAME_-96466_CLASS_ID = -96466 FRAME_-96466_CENTER = -96 TKFRAME_-96466_SPEC = 'MATRIX' TKFRAME_-96466_RELATIVE = 'SPP_EPILO_BASE' TKFRAME_-96466_MATRIX = (-0.9238795325112867 0.38268343236508984 0 0 0 1 0.38268343236508984 0.9238795325112867 0) FRAME_SPP_EPILO_W6 = -96477 FRAME_-96477_NAME = 'SPP_EPILO_W6' FRAME_-96477_CLASS = 4 FRAME_-96477_CLASS_ID = -96477 FRAME_-96477_CENTER = -96 TKFRAME_-96477_SPEC = 'MATRIX' TKFRAME_-96477_RELATIVE = 'SPP_EPILO_BASE' TKFRAME_-96477_MATRIX = (-0.3826834323650898 0.9238795325112867 0 0 0 1 0.9238795325112867 0.3826834323650898 0) FRAME_SPP_EPILO_W7 = -96488 FRAME_-96488_NAME = 'SPP_EPILO_W7' FRAME_-96488_CLASS = 4 FRAME_-96488_CLASS_ID = -96488 FRAME_-96488_CENTER = -96 TKFRAME_-96488_SPEC = 'MATRIX' TKFRAME_-96488_RELATIVE = 'SPP_EPILO_BASE' TKFRAME_-96488_MATRIX = (0.3826834323650898 0.9238795325112867 0 0 0 1 0.9238795325112867 -0.3826834323650898 0) \begintext EPI-Lo Aperture Frames ------------------------------------------------------------------------ [5] describes the aperture orientations and angles. Each aperture frame is defined such that its +Z axis points out of the aperture from the Ion pixel center. The aperture +Y axis is the projection of the wedge +Y axis onto the plane perpendicular to the aperture +Z axis. The aperture +X axis completes the right-handed frame. The aperture +X axis is aligned with the wedge +X axis for the apertures that lie along the wedge line of symmetry, namely L#8 and L#9. The following cross-section illustrates the aperture frame. Note that the aperture Y axis has a component into or out of the page for apertures L#0 through L#7. Y wedge ^ | | Y __ Z | __ aperture .'/ aperture | /. .' | `. .' \`` '|- - . `. .' \ | ` -.' \ | .' ` - \ | .' `. \|.' \----> Z *------------------- wedge Ion pixel center The following view looking down on a wedge roughly illustrates the location of each aperture within the wedge. The circles represent the apertures; positions are not to scale. X wedge ^ | | .'| | .' L#0| | .' O | | .'L#6 L#4 | | .' O O L#1| |.L#9 L#8 O | . O O L#2|-----> Z `. L#7 L#5 O | wedge `. O O | `. L#3| `. O | `. | `.| Wedge 0 aperture frames: \begindata FRAME_SPP_EPILO_L00 = -96412 FRAME_-96412_NAME = 'SPP_EPILO_L00' FRAME_-96412_CLASS = 4 FRAME_-96412_CLASS_ID = -96412 FRAME_-96412_CENTER = -96 TKFRAME_-96412_SPEC = 'MATRIX' TKFRAME_-96412_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96412_MATRIX = (0.9569185564499445 -0.0027262750100587, -0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, 0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L01 = -96413 FRAME_-96413_NAME = 'SPP_EPILO_L01' FRAME_-96413_CLASS = 4 FRAME_-96413_CLASS_ID = -96413 FRAME_-96413_CENTER = -96 TKFRAME_-96413_SPEC = 'MATRIX' TKFRAME_-96413_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96413_MATRIX = (0.9951765914819487 -0.0009211052643909, -0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, 0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L02 = -96414 FRAME_-96414_NAME = 'SPP_EPILO_L02' FRAME_-96414_CLASS = 4 FRAME_-96414_CLASS_ID = -96414 FRAME_-96414_CENTER = -96 TKFRAME_-96414_SPEC = 'MATRIX' TKFRAME_-96414_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96414_MATRIX = (0.9951765914819487 0.0009211052643909, 0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, -0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L03 = -96415 FRAME_-96415_NAME = 'SPP_EPILO_L03' FRAME_-96415_CLASS = 4 FRAME_-96415_CLASS_ID = -96415 FRAME_-96415_CENTER = -96 TKFRAME_-96415_SPEC = 'MATRIX' TKFRAME_-96415_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96415_MATRIX = (0.9569185564499445 0.0027262750100587, 0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, -0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L04 = -96416 FRAME_-96416_NAME = 'SPP_EPILO_L04' FRAME_-96416_CLASS = 4 FRAME_-96416_CLASS_ID = -96416 FRAME_-96416_CENTER = -96 TKFRAME_-96416_SPEC = 'MATRIX' TKFRAME_-96416_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96416_MATRIX = (0.9836441852061112 -0.0703416078843675, -0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, 0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L05 = -96417 FRAME_-96417_NAME = 'SPP_EPILO_L05' FRAME_-96417_CLASS = 4 FRAME_-96417_CLASS_ID = -96417 FRAME_-96417_CENTER = -96 TKFRAME_-96417_SPEC = 'MATRIX' TKFRAME_-96417_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96417_MATRIX = (0.9836441852061112 0.0703416078843675, 0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, -0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L06 = -96418 FRAME_-96418_NAME = 'SPP_EPILO_L06' FRAME_-96418_CLASS = 4 FRAME_-96418_CLASS_ID = -96418 FRAME_-96418_CENTER = -96 TKFRAME_-96418_SPEC = 'MATRIX' TKFRAME_-96418_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96418_MATRIX = (0.9903244000533897 -0.0984911534882631, -0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, 0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L07 = -96419 FRAME_-96419_NAME = 'SPP_EPILO_L07' FRAME_-96419_CLASS = 4 FRAME_-96419_CLASS_ID = -96419 FRAME_-96419_CENTER = -96 TKFRAME_-96419_SPEC = 'MATRIX' TKFRAME_-96419_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96419_MATRIX = (0.9903244000533897 0.0984911534882631, 0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, -0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L08 = -96420 FRAME_-96420_NAME = 'SPP_EPILO_L08' FRAME_-96420_CLASS = 4 FRAME_-96420_CLASS_ID = -96420 FRAME_-96420_CENTER = -96 TKFRAME_-96420_SPEC = 'MATRIX' TKFRAME_-96420_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96420_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3902632340374340, -0.9207033225521906, 0.0000000000000000, 0.9207033225521906, 0.3902632340374340) FRAME_SPP_EPILO_L09 = -96421 FRAME_-96421_NAME = 'SPP_EPILO_L09' FRAME_-96421_CLASS = 4 FRAME_-96421_CLASS_ID = -96421 FRAME_-96421_CENTER = -96 TKFRAME_-96421_SPEC = 'MATRIX' TKFRAME_-96421_RELATIVE = 'SPP_EPILO_W0' TKFRAME_-96421_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000001, -1.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000001) \begintext Wedge 1 aperture frames: \begindata FRAME_SPP_EPILO_L10 = -96423 FRAME_-96423_NAME = 'SPP_EPILO_L10' FRAME_-96423_CLASS = 4 FRAME_-96423_CLASS_ID = -96423 FRAME_-96423_CENTER = -96 TKFRAME_-96423_SPEC = 'MATRIX' TKFRAME_-96423_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96423_MATRIX = (0.9569185564499445 -0.0027262750100587, -0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, 0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L11 = -96424 FRAME_-96424_NAME = 'SPP_EPILO_L11' FRAME_-96424_CLASS = 4 FRAME_-96424_CLASS_ID = -96424 FRAME_-96424_CENTER = -96 TKFRAME_-96424_SPEC = 'MATRIX' TKFRAME_-96424_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96424_MATRIX = (0.9951765914819487 -0.0009211052643909, -0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, 0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L12 = -96425 FRAME_-96425_NAME = 'SPP_EPILO_L12' FRAME_-96425_CLASS = 4 FRAME_-96425_CLASS_ID = -96425 FRAME_-96425_CENTER = -96 TKFRAME_-96425_SPEC = 'MATRIX' TKFRAME_-96425_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96425_MATRIX = (0.9951765914819487 0.0009211052643909, 0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, -0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L13 = -96426 FRAME_-96426_NAME = 'SPP_EPILO_L13' FRAME_-96426_CLASS = 4 FRAME_-96426_CLASS_ID = -96426 FRAME_-96426_CENTER = -96 TKFRAME_-96426_SPEC = 'MATRIX' TKFRAME_-96426_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96426_MATRIX = (0.9569185564499445 0.0027262750100587, 0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, -0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L14 = -96427 FRAME_-96427_NAME = 'SPP_EPILO_L14' FRAME_-96427_CLASS = 4 FRAME_-96427_CLASS_ID = -96427 FRAME_-96427_CENTER = -96 TKFRAME_-96427_SPEC = 'MATRIX' TKFRAME_-96427_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96427_MATRIX = (0.9836441852061112 -0.0703416078843675, -0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, 0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L15 = -96428 FRAME_-96428_NAME = 'SPP_EPILO_L15' FRAME_-96428_CLASS = 4 FRAME_-96428_CLASS_ID = -96428 FRAME_-96428_CENTER = -96 TKFRAME_-96428_SPEC = 'MATRIX' TKFRAME_-96428_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96428_MATRIX = (0.9836441852061112 0.0703416078843675, 0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, -0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L16 = -96429 FRAME_-96429_NAME = 'SPP_EPILO_L16' FRAME_-96429_CLASS = 4 FRAME_-96429_CLASS_ID = -96429 FRAME_-96429_CENTER = -96 TKFRAME_-96429_SPEC = 'MATRIX' TKFRAME_-96429_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96429_MATRIX = (0.9903244000533897 -0.0984911534882631, -0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, 0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L17 = -96430 FRAME_-96430_NAME = 'SPP_EPILO_L17' FRAME_-96430_CLASS = 4 FRAME_-96430_CLASS_ID = -96430 FRAME_-96430_CENTER = -96 TKFRAME_-96430_SPEC = 'MATRIX' TKFRAME_-96430_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96430_MATRIX = (0.9903244000533897 0.0984911534882631, 0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, -0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L18 = -96431 FRAME_-96431_NAME = 'SPP_EPILO_L18' FRAME_-96431_CLASS = 4 FRAME_-96431_CLASS_ID = -96431 FRAME_-96431_CENTER = -96 TKFRAME_-96431_SPEC = 'MATRIX' TKFRAME_-96431_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96431_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3902632340374340, -0.9207033225521906, 0.0000000000000000, 0.9207033225521906, 0.3902632340374340) FRAME_SPP_EPILO_L19 = -96432 FRAME_-96432_NAME = 'SPP_EPILO_L19' FRAME_-96432_CLASS = 4 FRAME_-96432_CLASS_ID = -96432 FRAME_-96432_CENTER = -96 TKFRAME_-96432_SPEC = 'MATRIX' TKFRAME_-96432_RELATIVE = 'SPP_EPILO_W1' TKFRAME_-96432_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000001, -1.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000001) \begintext Wedge 2 aperture frames: \begindata FRAME_SPP_EPILO_L20 = -96434 FRAME_-96434_NAME = 'SPP_EPILO_L20' FRAME_-96434_CLASS = 4 FRAME_-96434_CLASS_ID = -96434 FRAME_-96434_CENTER = -96 TKFRAME_-96434_SPEC = 'MATRIX' TKFRAME_-96434_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96434_MATRIX = (0.9569185564499445 -0.0027262750100587, -0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, 0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L21 = -96435 FRAME_-96435_NAME = 'SPP_EPILO_L21' FRAME_-96435_CLASS = 4 FRAME_-96435_CLASS_ID = -96435 FRAME_-96435_CENTER = -96 TKFRAME_-96435_SPEC = 'MATRIX' TKFRAME_-96435_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96435_MATRIX = (0.9951765914819487 -0.0009211052643909, -0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, 0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L22 = -96436 FRAME_-96436_NAME = 'SPP_EPILO_L22' FRAME_-96436_CLASS = 4 FRAME_-96436_CLASS_ID = -96436 FRAME_-96436_CENTER = -96 TKFRAME_-96436_SPEC = 'MATRIX' TKFRAME_-96436_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96436_MATRIX = (0.9951765914819487 0.0009211052643909, 0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, -0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L23 = -96437 FRAME_-96437_NAME = 'SPP_EPILO_L23' FRAME_-96437_CLASS = 4 FRAME_-96437_CLASS_ID = -96437 FRAME_-96437_CENTER = -96 TKFRAME_-96437_SPEC = 'MATRIX' TKFRAME_-96437_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96437_MATRIX = (0.9569185564499445 0.0027262750100587, 0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, -0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L24 = -96438 FRAME_-96438_NAME = 'SPP_EPILO_L24' FRAME_-96438_CLASS = 4 FRAME_-96438_CLASS_ID = -96438 FRAME_-96438_CENTER = -96 TKFRAME_-96438_SPEC = 'MATRIX' TKFRAME_-96438_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96438_MATRIX = (0.9836441852061112 -0.0703416078843675, -0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, 0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L25 = -96439 FRAME_-96439_NAME = 'SPP_EPILO_L25' FRAME_-96439_CLASS = 4 FRAME_-96439_CLASS_ID = -96439 FRAME_-96439_CENTER = -96 TKFRAME_-96439_SPEC = 'MATRIX' TKFRAME_-96439_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96439_MATRIX = (0.9836441852061112 0.0703416078843675, 0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, -0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L26 = -96440 FRAME_-96440_NAME = 'SPP_EPILO_L26' FRAME_-96440_CLASS = 4 FRAME_-96440_CLASS_ID = -96440 FRAME_-96440_CENTER = -96 TKFRAME_-96440_SPEC = 'MATRIX' TKFRAME_-96440_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96440_MATRIX = (0.9903244000533897 -0.0984911534882631, -0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, 0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L27 = -96441 FRAME_-96441_NAME = 'SPP_EPILO_L27' FRAME_-96441_CLASS = 4 FRAME_-96441_CLASS_ID = -96441 FRAME_-96441_CENTER = -96 TKFRAME_-96441_SPEC = 'MATRIX' TKFRAME_-96441_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96441_MATRIX = (0.9903244000533897 0.0984911534882631, 0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, -0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L28 = -96442 FRAME_-96442_NAME = 'SPP_EPILO_L28' FRAME_-96442_CLASS = 4 FRAME_-96442_CLASS_ID = -96442 FRAME_-96442_CENTER = -96 TKFRAME_-96442_SPEC = 'MATRIX' TKFRAME_-96442_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96442_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3902632340374340, -0.9207033225521906, 0.0000000000000000, 0.9207033225521906, 0.3902632340374340) FRAME_SPP_EPILO_L29 = -96443 FRAME_-96443_NAME = 'SPP_EPILO_L29' FRAME_-96443_CLASS = 4 FRAME_-96443_CLASS_ID = -96443 FRAME_-96443_CENTER = -96 TKFRAME_-96443_SPEC = 'MATRIX' TKFRAME_-96443_RELATIVE = 'SPP_EPILO_W2' TKFRAME_-96443_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000001, -1.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000001) \begintext Wedge 3 aperture frames: \begindata FRAME_SPP_EPILO_L30 = -96445 FRAME_-96445_NAME = 'SPP_EPILO_L30' FRAME_-96445_CLASS = 4 FRAME_-96445_CLASS_ID = -96445 FRAME_-96445_CENTER = -96 TKFRAME_-96445_SPEC = 'MATRIX' TKFRAME_-96445_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96445_MATRIX = (0.9569185564499445 -0.0027262750100587, -0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, 0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L31 = -96446 FRAME_-96446_NAME = 'SPP_EPILO_L31' FRAME_-96446_CLASS = 4 FRAME_-96446_CLASS_ID = -96446 FRAME_-96446_CENTER = -96 TKFRAME_-96446_SPEC = 'MATRIX' TKFRAME_-96446_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96446_MATRIX = (0.9951765914819487 -0.0009211052643909, -0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, 0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L32 = -96447 FRAME_-96447_NAME = 'SPP_EPILO_L32' FRAME_-96447_CLASS = 4 FRAME_-96447_CLASS_ID = -96447 FRAME_-96447_CENTER = -96 TKFRAME_-96447_SPEC = 'MATRIX' TKFRAME_-96447_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96447_MATRIX = (0.9951765914819487 0.0009211052643909, 0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, -0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L33 = -96448 FRAME_-96448_NAME = 'SPP_EPILO_L33' FRAME_-96448_CLASS = 4 FRAME_-96448_CLASS_ID = -96448 FRAME_-96448_CENTER = -96 TKFRAME_-96448_SPEC = 'MATRIX' TKFRAME_-96448_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96448_MATRIX = (0.9569185564499445 0.0027262750100587, 0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, -0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L34 = -96449 FRAME_-96449_NAME = 'SPP_EPILO_L34' FRAME_-96449_CLASS = 4 FRAME_-96449_CLASS_ID = -96449 FRAME_-96449_CENTER = -96 TKFRAME_-96449_SPEC = 'MATRIX' TKFRAME_-96449_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96449_MATRIX = (0.9836441852061112 -0.0703416078843675, -0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, 0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L35 = -96450 FRAME_-96450_NAME = 'SPP_EPILO_L35' FRAME_-96450_CLASS = 4 FRAME_-96450_CLASS_ID = -96450 FRAME_-96450_CENTER = -96 TKFRAME_-96450_SPEC = 'MATRIX' TKFRAME_-96450_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96450_MATRIX = (0.9836441852061112 0.0703416078843675, 0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, -0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L36 = -96451 FRAME_-96451_NAME = 'SPP_EPILO_L36' FRAME_-96451_CLASS = 4 FRAME_-96451_CLASS_ID = -96451 FRAME_-96451_CENTER = -96 TKFRAME_-96451_SPEC = 'MATRIX' TKFRAME_-96451_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96451_MATRIX = (0.9903244000533897 -0.0984911534882631, -0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, 0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L37 = -96452 FRAME_-96452_NAME = 'SPP_EPILO_L37' FRAME_-96452_CLASS = 4 FRAME_-96452_CLASS_ID = -96452 FRAME_-96452_CENTER = -96 TKFRAME_-96452_SPEC = 'MATRIX' TKFRAME_-96452_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96452_MATRIX = (0.9903244000533897 0.0984911534882631, 0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, -0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L38 = -96453 FRAME_-96453_NAME = 'SPP_EPILO_L38' FRAME_-96453_CLASS = 4 FRAME_-96453_CLASS_ID = -96453 FRAME_-96453_CENTER = -96 TKFRAME_-96453_SPEC = 'MATRIX' TKFRAME_-96453_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96453_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3902632340374340, -0.9207033225521906, 0.0000000000000000, 0.9207033225521906, 0.3902632340374340) FRAME_SPP_EPILO_L39 = -96454 FRAME_-96454_NAME = 'SPP_EPILO_L39' FRAME_-96454_CLASS = 4 FRAME_-96454_CLASS_ID = -96454 FRAME_-96454_CENTER = -96 TKFRAME_-96454_SPEC = 'MATRIX' TKFRAME_-96454_RELATIVE = 'SPP_EPILO_W3' TKFRAME_-96454_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000001, -1.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000001) \begintext Wedge 4 aperture frames: \begindata FRAME_SPP_EPILO_L40 = -96456 FRAME_-96456_NAME = 'SPP_EPILO_L40' FRAME_-96456_CLASS = 4 FRAME_-96456_CLASS_ID = -96456 FRAME_-96456_CENTER = -96 TKFRAME_-96456_SPEC = 'MATRIX' TKFRAME_-96456_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96456_MATRIX = (0.9569185564499445 -0.0027262750100587, -0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, 0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L41 = -96457 FRAME_-96457_NAME = 'SPP_EPILO_L41' FRAME_-96457_CLASS = 4 FRAME_-96457_CLASS_ID = -96457 FRAME_-96457_CENTER = -96 TKFRAME_-96457_SPEC = 'MATRIX' TKFRAME_-96457_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96457_MATRIX = (0.9951765914819487 -0.0009211052643909, -0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, 0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L42 = -96458 FRAME_-96458_NAME = 'SPP_EPILO_L42' FRAME_-96458_CLASS = 4 FRAME_-96458_CLASS_ID = -96458 FRAME_-96458_CENTER = -96 TKFRAME_-96458_SPEC = 'MATRIX' TKFRAME_-96458_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96458_MATRIX = (0.9951765914819487 0.0009211052643909, 0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, -0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L43 = -96459 FRAME_-96459_NAME = 'SPP_EPILO_L43' FRAME_-96459_CLASS = 4 FRAME_-96459_CLASS_ID = -96459 FRAME_-96459_CENTER = -96 TKFRAME_-96459_SPEC = 'MATRIX' TKFRAME_-96459_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96459_MATRIX = (0.9569185564499445 0.0027262750100587, 0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, -0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L44 = -96460 FRAME_-96460_NAME = 'SPP_EPILO_L44' FRAME_-96460_CLASS = 4 FRAME_-96460_CLASS_ID = -96460 FRAME_-96460_CENTER = -96 TKFRAME_-96460_SPEC = 'MATRIX' TKFRAME_-96460_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96460_MATRIX = (0.9836441852061112 -0.0703416078843675, -0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, 0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L45 = -96461 FRAME_-96461_NAME = 'SPP_EPILO_L45' FRAME_-96461_CLASS = 4 FRAME_-96461_CLASS_ID = -96461 FRAME_-96461_CENTER = -96 TKFRAME_-96461_SPEC = 'MATRIX' TKFRAME_-96461_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96461_MATRIX = (0.9836441852061112 0.0703416078843675, 0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, -0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L46 = -96462 FRAME_-96462_NAME = 'SPP_EPILO_L46' FRAME_-96462_CLASS = 4 FRAME_-96462_CLASS_ID = -96462 FRAME_-96462_CENTER = -96 TKFRAME_-96462_SPEC = 'MATRIX' TKFRAME_-96462_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96462_MATRIX = (0.9903244000533897 -0.0984911534882631, -0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, 0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L47 = -96463 FRAME_-96463_NAME = 'SPP_EPILO_L47' FRAME_-96463_CLASS = 4 FRAME_-96463_CLASS_ID = -96463 FRAME_-96463_CENTER = -96 TKFRAME_-96463_SPEC = 'MATRIX' TKFRAME_-96463_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96463_MATRIX = (0.9903244000533897 0.0984911534882631, 0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, -0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L48 = -96464 FRAME_-96464_NAME = 'SPP_EPILO_L48' FRAME_-96464_CLASS = 4 FRAME_-96464_CLASS_ID = -96464 FRAME_-96464_CENTER = -96 TKFRAME_-96464_SPEC = 'MATRIX' TKFRAME_-96464_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96464_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3902632340374340, -0.9207033225521906, 0.0000000000000000, 0.9207033225521906, 0.3902632340374340) FRAME_SPP_EPILO_L49 = -96465 FRAME_-96465_NAME = 'SPP_EPILO_L49' FRAME_-96465_CLASS = 4 FRAME_-96465_CLASS_ID = -96465 FRAME_-96465_CENTER = -96 TKFRAME_-96465_SPEC = 'MATRIX' TKFRAME_-96465_RELATIVE = 'SPP_EPILO_W4' TKFRAME_-96465_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000001, -1.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000001) \begintext Wedge 5 aperture frames: \begindata FRAME_SPP_EPILO_L50 = -96467 FRAME_-96467_NAME = 'SPP_EPILO_L50' FRAME_-96467_CLASS = 4 FRAME_-96467_CLASS_ID = -96467 FRAME_-96467_CENTER = -96 TKFRAME_-96467_SPEC = 'MATRIX' TKFRAME_-96467_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96467_MATRIX = (0.9569185564499445 -0.0027262750100587, -0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, 0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L51 = -96468 FRAME_-96468_NAME = 'SPP_EPILO_L51' FRAME_-96468_CLASS = 4 FRAME_-96468_CLASS_ID = -96468 FRAME_-96468_CENTER = -96 TKFRAME_-96468_SPEC = 'MATRIX' TKFRAME_-96468_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96468_MATRIX = (0.9951765914819487 -0.0009211052643909, -0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, 0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L52 = -96469 FRAME_-96469_NAME = 'SPP_EPILO_L52' FRAME_-96469_CLASS = 4 FRAME_-96469_CLASS_ID = -96469 FRAME_-96469_CENTER = -96 TKFRAME_-96469_SPEC = 'MATRIX' TKFRAME_-96469_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96469_MATRIX = (0.9951765914819487 0.0009211052643909, 0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, -0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L53 = -96470 FRAME_-96470_NAME = 'SPP_EPILO_L53' FRAME_-96470_CLASS = 4 FRAME_-96470_CLASS_ID = -96470 FRAME_-96470_CENTER = -96 TKFRAME_-96470_SPEC = 'MATRIX' TKFRAME_-96470_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96470_MATRIX = (0.9569185564499445 0.0027262750100587, 0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, -0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L54 = -96471 FRAME_-96471_NAME = 'SPP_EPILO_L54' FRAME_-96471_CLASS = 4 FRAME_-96471_CLASS_ID = -96471 FRAME_-96471_CENTER = -96 TKFRAME_-96471_SPEC = 'MATRIX' TKFRAME_-96471_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96471_MATRIX = (0.9836441852061112 -0.0703416078843675, -0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, 0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L55 = -96472 FRAME_-96472_NAME = 'SPP_EPILO_L55' FRAME_-96472_CLASS = 4 FRAME_-96472_CLASS_ID = -96472 FRAME_-96472_CENTER = -96 TKFRAME_-96472_SPEC = 'MATRIX' TKFRAME_-96472_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96472_MATRIX = (0.9836441852061112 0.0703416078843675, 0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, -0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L56 = -96473 FRAME_-96473_NAME = 'SPP_EPILO_L56' FRAME_-96473_CLASS = 4 FRAME_-96473_CLASS_ID = -96473 FRAME_-96473_CENTER = -96 TKFRAME_-96473_SPEC = 'MATRIX' TKFRAME_-96473_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96473_MATRIX = (0.9903244000533897 -0.0984911534882631, -0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, 0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L57 = -96474 FRAME_-96474_NAME = 'SPP_EPILO_L57' FRAME_-96474_CLASS = 4 FRAME_-96474_CLASS_ID = -96474 FRAME_-96474_CENTER = -96 TKFRAME_-96474_SPEC = 'MATRIX' TKFRAME_-96474_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96474_MATRIX = (0.9903244000533897 0.0984911534882631, 0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, -0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L58 = -96475 FRAME_-96475_NAME = 'SPP_EPILO_L58' FRAME_-96475_CLASS = 4 FRAME_-96475_CLASS_ID = -96475 FRAME_-96475_CENTER = -96 TKFRAME_-96475_SPEC = 'MATRIX' TKFRAME_-96475_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96475_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3902632340374340, -0.9207033225521906, 0.0000000000000000, 0.9207033225521906, 0.3902632340374340) FRAME_SPP_EPILO_L59 = -96476 FRAME_-96476_NAME = 'SPP_EPILO_L59' FRAME_-96476_CLASS = 4 FRAME_-96476_CLASS_ID = -96476 FRAME_-96476_CENTER = -96 TKFRAME_-96476_SPEC = 'MATRIX' TKFRAME_-96476_RELATIVE = 'SPP_EPILO_W5' TKFRAME_-96476_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000001, -1.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000001) \begintext Wedge 6 aperture frames: \begindata FRAME_SPP_EPILO_L60 = -96478 FRAME_-96478_NAME = 'SPP_EPILO_L60' FRAME_-96478_CLASS = 4 FRAME_-96478_CLASS_ID = -96478 FRAME_-96478_CENTER = -96 TKFRAME_-96478_SPEC = 'MATRIX' TKFRAME_-96478_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96478_MATRIX = (0.9569185564499445 -0.0027262750100587, -0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, 0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L61 = -96479 FRAME_-96479_NAME = 'SPP_EPILO_L61' FRAME_-96479_CLASS = 4 FRAME_-96479_CLASS_ID = -96479 FRAME_-96479_CENTER = -96 TKFRAME_-96479_SPEC = 'MATRIX' TKFRAME_-96479_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96479_MATRIX = (0.9951765914819487 -0.0009211052643909, -0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, 0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L62 = -96480 FRAME_-96480_NAME = 'SPP_EPILO_L62' FRAME_-96480_CLASS = 4 FRAME_-96480_CLASS_ID = -96480 FRAME_-96480_CENTER = -96 TKFRAME_-96480_SPEC = 'MATRIX' TKFRAME_-96480_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96480_MATRIX = (0.9951765914819487 0.0009211052643909, 0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, -0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L63 = -96481 FRAME_-96481_NAME = 'SPP_EPILO_L63' FRAME_-96481_CLASS = 4 FRAME_-96481_CLASS_ID = -96481 FRAME_-96481_CENTER = -96 TKFRAME_-96481_SPEC = 'MATRIX' TKFRAME_-96481_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96481_MATRIX = (0.9569185564499445 0.0027262750100587, 0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, -0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L64 = -96482 FRAME_-96482_NAME = 'SPP_EPILO_L64' FRAME_-96482_CLASS = 4 FRAME_-96482_CLASS_ID = -96482 FRAME_-96482_CENTER = -96 TKFRAME_-96482_SPEC = 'MATRIX' TKFRAME_-96482_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96482_MATRIX = (0.9836441852061112 -0.0703416078843675, -0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, 0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L65 = -96483 FRAME_-96483_NAME = 'SPP_EPILO_L65' FRAME_-96483_CLASS = 4 FRAME_-96483_CLASS_ID = -96483 FRAME_-96483_CENTER = -96 TKFRAME_-96483_SPEC = 'MATRIX' TKFRAME_-96483_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96483_MATRIX = (0.9836441852061112 0.0703416078843675, 0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, -0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L66 = -96484 FRAME_-96484_NAME = 'SPP_EPILO_L66' FRAME_-96484_CLASS = 4 FRAME_-96484_CLASS_ID = -96484 FRAME_-96484_CENTER = -96 TKFRAME_-96484_SPEC = 'MATRIX' TKFRAME_-96484_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96484_MATRIX = (0.9903244000533897 -0.0984911534882631, -0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, 0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L67 = -96485 FRAME_-96485_NAME = 'SPP_EPILO_L67' FRAME_-96485_CLASS = 4 FRAME_-96485_CLASS_ID = -96485 FRAME_-96485_CENTER = -96 TKFRAME_-96485_SPEC = 'MATRIX' TKFRAME_-96485_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96485_MATRIX = (0.9903244000533897 0.0984911534882631, 0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, -0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L68 = -96486 FRAME_-96486_NAME = 'SPP_EPILO_L68' FRAME_-96486_CLASS = 4 FRAME_-96486_CLASS_ID = -96486 FRAME_-96486_CENTER = -96 TKFRAME_-96486_SPEC = 'MATRIX' TKFRAME_-96486_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96486_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3902632340374340, -0.9207033225521906, 0.0000000000000000, 0.9207033225521906, 0.3902632340374340) FRAME_SPP_EPILO_L69 = -96487 FRAME_-96487_NAME = 'SPP_EPILO_L69' FRAME_-96487_CLASS = 4 FRAME_-96487_CLASS_ID = -96487 FRAME_-96487_CENTER = -96 TKFRAME_-96487_SPEC = 'MATRIX' TKFRAME_-96487_RELATIVE = 'SPP_EPILO_W6' TKFRAME_-96487_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000001, -1.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000001) \begintext Wedge 7 aperture frames: \begindata FRAME_SPP_EPILO_L70 = -96489 FRAME_-96489_NAME = 'SPP_EPILO_L70' FRAME_-96489_CLASS = 4 FRAME_-96489_CLASS_ID = -96489 FRAME_-96489_CENTER = -96 TKFRAME_-96489_SPEC = 'MATRIX' TKFRAME_-96489_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96489_MATRIX = (0.9569185564499445 -0.0027262750100587, -0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, 0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L71 = -96490 FRAME_-96490_NAME = 'SPP_EPILO_L71' FRAME_-96490_CLASS = 4 FRAME_-96490_CLASS_ID = -96490 FRAME_-96490_CENTER = -96 TKFRAME_-96490_SPEC = 'MATRIX' TKFRAME_-96490_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96490_MATRIX = (0.9951765914819487 -0.0009211052643909, -0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, 0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L72 = -96491 FRAME_-96491_NAME = 'SPP_EPILO_L72' FRAME_-96491_CLASS = 4 FRAME_-96491_CLASS_ID = -96491 FRAME_-96491_CENTER = -96 TKFRAME_-96491_SPEC = 'MATRIX' TKFRAME_-96491_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96491_MATRIX = (0.9951765914819487 0.0009211052643909, 0.0980953787467206, 0.0000000000000000, 0.9999559178549919, -0.0093894806448862, -0.0980997031920620, 0.0093441913439635, 0.9951327219631343) FRAME_SPP_EPILO_L73 = -96492 FRAME_-96492_NAME = 'SPP_EPILO_L73' FRAME_-96492_CLASS = 4 FRAME_-96492_CLASS_ID = -96492 FRAME_-96492_CENTER = -96 TKFRAME_-96492_SPEC = 'MATRIX' TKFRAME_-96492_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96492_MATRIX = (0.9569185564499445 0.0027262750100587, 0.2903436648978653, 0.0000000000000000, 0.9999559185467560, -0.0093894069734682, -0.2903564642327675, 0.0089848977669722, 0.9568763740893401) FRAME_SPP_EPILO_L74 = -96493 FRAME_-96493_NAME = 'SPP_EPILO_L74' FRAME_-96493_CLASS = 4 FRAME_-96493_CLASS_ID = -96493 FRAME_-96493_CENTER = -96 TKFRAME_-96493_SPEC = 'MATRIX' TKFRAME_-96493_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96493_MATRIX = (0.9836441852061112 -0.0703416078843675, -0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, 0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L75 = -96494 FRAME_-96494_NAME = 'SPP_EPILO_L75' FRAME_-96494_CLASS = 4 FRAME_-96494_CLASS_ID = -96494 FRAME_-96494_CENTER = -96 TKFRAME_-96494_SPEC = 'MATRIX' TKFRAME_-96494_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96494_MATRIX = (0.9836441852061112 0.0703416078843675, 0.1658197066408207, 0.0000000000000000, 0.9205940500233174, -0.3905209278152269, -0.1801225052851696, 0.3841336398467433, 0.9055369842407799) FRAME_SPP_EPILO_L76 = -96495 FRAME_-96495_NAME = 'SPP_EPILO_L76' FRAME_-96495_CLASS = 4 FRAME_-96495_CLASS_ID = -96495 FRAME_-96495_CENTER = -96 TKFRAME_-96495_SPEC = 'MATRIX' TKFRAME_-96495_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96495_MATRIX = (0.9903244000533897 -0.0984911534882631, -0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, 0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L77 = -96496 FRAME_-96496_NAME = 'SPP_EPILO_L77' FRAME_-96496_CLASS = 4 FRAME_-96496_CLASS_ID = -96496 FRAME_-96496_CENTER = -96 TKFRAME_-96496_SPEC = 'MATRIX' TKFRAME_-96496_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96496_MATRIX = (0.9903244000533897 0.0984911534882631, 0.0977602953322317, 0.0000000000000000, 0.7044685664732034, -0.7097351892439814, -0.1387716925705447, 0.7028680754848248, 0.6976524104490466) FRAME_SPP_EPILO_L78 = -96497 FRAME_-96497_NAME = 'SPP_EPILO_L78' FRAME_-96497_CLASS = 4 FRAME_-96497_CLASS_ID = -96497 FRAME_-96497_CENTER = -96 TKFRAME_-96497_SPEC = 'MATRIX' TKFRAME_-96497_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96497_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.3902632340374340, -0.9207033225521906, 0.0000000000000000, 0.9207033225521906, 0.3902632340374340) FRAME_SPP_EPILO_L79 = -96498 FRAME_-96498_NAME = 'SPP_EPILO_L79' FRAME_-96498_CLASS = 4 FRAME_-96498_CLASS_ID = -96498 FRAME_-96498_CENTER = -96 TKFRAME_-96498_SPEC = 'MATRIX' TKFRAME_-96498_RELATIVE = 'SPP_EPILO_W7' TKFRAME_-96498_MATRIX = (1.0000000000000000 -0.0000000000000000, 0.0000000000000000, 0.0000000000000000, 0.0000000000000001, -1.0000000000000000, 0.0000000000000000, 1.0000000000000000, 0.0000000000000001) \begintext EPI-Hi Frames =========================================================================== EPI-Hi consists of three telescopes, a double-ended high energy telescope (HET), a double-ended low energy telescope (LET1), and a single-ended low energy telescope (LET2) [21]. Coordinate systems are defined here for each telescope end, thus there are five EPI-Hi instrument frame definitions. The EPI-Hi instrument frames are each defined such that +Z is the normal to the face of the telescope end and points out the centerline axis (through the telescope tube axis of symmetry). +Y points from the center of the telescope end towards the detector specified in [20]. +X completes the right-handed frame The instrument frames for each end of an arbitrary double-ended EPI-Hi telescope is illustrated below. .-------------------------. .' telescope tube .' '. . . . Z <--------.---x . o-----------> Z instr ' | ' | ' instr '. | '. | .' '-------------------------' | |________| | | detector | | | v Y v Y instr instr The instrument +Z axis is given in [16] in spacecraft coordinates. It is the post-environmental measured normal to the protective cap covering the telescope face. Telescope +Z axis in spacecraft coords --------- ---------------------------- LET1 A ( 0.710453, 0.002232, 0.703741) LET1 B (-0.71142, 0.00041, -0.70277) LET 2 ( 0.691287, 0.005205, -0.72256) HET A ( 0.349732, -0.00395, 0.936842) HET B (-0.34959, 0.000988, -0.9369) [20] provides information on the physical location of the detectors, and gives the twist angle about the telescope +Z axis required to rotate the vector V into telescope +Y, where V is the projection of the spacecraft +X axis onto the plane normal to the instrument Z axis (onto the face of the telescope). The twist angle and vector V are illustrated below. Note that V and Y both lie in the plane of the telescope face. ^ V Instrument +Z | points out of | the page. | ` . | \ theta * ) \ / \ ' \ \ +Y instr The values for theta are given below in degrees, from [20]. The +Y axis as determined above is also listed for each telescope. theta Telescope (deg) +Y axis in spacecraft coordinates --------- ----- --------------------------------- LET1 A 165 (-0.68017377230917, 0.25881840040615, 0.68584012355207) LET1 B -165 (-0.67874681239514, 0.25881902334887, 0.68725212099794) LET 2 -60 ( 0.35816916081018, 0.86601367248778, 0.34890567680786) HET A -160 (-0.88082242270843, -0.34201747513331, 0.32737731497081) HET B 160 (-0.88051844767778, -0.34201997639446, 0.32819140611271) The +X axis completes the right-handed coordinate system for each telescope. The rotation matrices taking vectors from telescope coordinates to spacecraft coordinates are given in the frame definitions below. \begindata FRAME_SPP_EPIHI_LET1A = -96700 FRAME_-96700_NAME = 'SPP_EPIHI_LET1A' FRAME_-96700_CLASS = 4 FRAME_-96700_CLASS_ID = -96700 FRAME_-96700_CENTER = 'SPP' TKFRAME_-96700_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96700_SPEC = 'MATRIX' TKFRAME_-96700_MATRIX = ( 0.18061033902238 0.96592342024946 -0.18539647151930 -0.68017377230917 0.25881840040615 0.68584012355207 0.71045300000000 0.00223200000000 0.70374100000000 ) FRAME_SPP_EPIHI_LET1B = -96701 FRAME_-96701_NAME = 'SPP_EPIHI_LET1B' FRAME_-96701_CLASS = 4 FRAME_-96701_CLASS_ID = -96701 FRAME_-96701_CENTER = 'SPP' TKFRAME_-96701_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96701_SPEC = 'MATRIX' TKFRAME_-96701_MATRIX = ( -0.18217163062016 -0.96592574510334 0.18385035203594 -0.67874681239514 0.25881902334887 0.68725212099794 -0.71142000000000 0.00041000000000 -0.70277000000000 ) FRAME_SPP_EPIHI_LET2C = -96702 FRAME_-96702_NAME = 'SPP_EPIHI_LET2C' FRAME_-96702_CLASS = 4 FRAME_-96702_CLASS_ID = -96702 FRAME_-96702_CENTER = 'SPP' TKFRAME_-96702_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96702_SPEC = 'MATRIX' TKFRAME_-96702_MATRIX = ( -0.62756359548650 0.49999322693272 -0.59680039095285 0.35816916081018 0.86601367248778 0.34890567680786 0.69128700000000 0.00520500000000 -0.72256000000000 ) FRAME_SPP_EPIHI_HETA = -96703 FRAME_-96703_NAME = 'SPP_EPIHI_HETA' FRAME_-96703_CLASS = 4 FRAME_-96703_CLASS_ID = -96703 FRAME_-96703_CENTER = 'SPP' TKFRAME_-96703_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96703_SPEC = 'MATRIX' TKFRAME_-96703_MATRIX = ( -0.31912303432034 0.93968528998764 0.12309364218766 -0.88082242270843 -0.34201747513331 0.32737731497081 0.34973200000000 -0.00395000000000 0.93684200000000 ) FRAME_SPP_EPIHI_HETB = -96704 FRAME_-96704_NAME = 'SPP_EPIHI_HETB' FRAME_-96704_CLASS = 4 FRAME_-96704_CLASS_ID = -96704 FRAME_-96704_CENTER = 'SPP' TKFRAME_-96704_RELATIVE = 'SPP_SPACECRAFT' TKFRAME_-96704_SPEC = 'MATRIX' TKFRAME_-96704_MATRIX = ( 0.32011494234042 -0.93969216214619 -0.12043697144731 -0.88051844767778 -0.34201997639446 0.32819140611271 -0.34959000000000 0.00098800000000 -0.93690000000000 ) \begintext