
 1

Space Physics Dataset Browser
Searching Distributed Datasets

Matthew Marquissee

Undergrad, Mathematics and Computer Science
University of Illinois at Urbana-Champaign

Achieving Competency in Careers in Engineering and Space Sciences (AAAS)
NASA Goddard Space Flight Center

Code 632 – Space Physics Data Facility
Advisor: Robert M. Candey

 2

Abstract
 The Space Physics Data Facility (SPDF) manages and distributes a variety of data products

geared toward the study of plasma around the Earth and its interaction with solar phenomena. Such

products include CDAWeb, a user-friendly web service that plots many variables over time, and

SSCWeb, a service that can locate a certain spacecraft in the magnetosphere. These two systems alone

give researchers in physics enormous insight into the turbulent frontier between Earth and our Sun. My

mentor has proposed a new service as part of a future Space Physics Virtual Observatory, designed to

incorporate and augment already existing systems. The goal is to combine abstraction with depth. The

user of this system will not need to know where or how the source data is stored. Given the name of a

spacecraft ‘s dataset, a time range, and a desired output format, it is the system’s task to search through as

much source data as possible, combine it, and present it in the best possible way. A researcher can focus

on space physics research and ignore the implementation details.

 However, the servers containing the source data, owned by several different organizations, are not

synchronized. My project was to develop a flexible schema, using XML, describing how to find desired

files in a specific dataset. In addition to providing a means to generate XML files for each data site, I was

to use these files to limit search time and server load. The XML files, once generated, provide an instant

tree hierarchy to search, performing most of the work without any impact on the server itself.

 The heart of my project, dubbed the “Space Physics Dataset Browser”, consists of four major

phases. First, input is gathered from the user interface, which allows a user to navigate through the entire

XML tree structure with ease. Second, a dataset descriptor and time range is sent into the search method.

This search returns a full path to the desired dataset on a remote server. Third, directory listings on the

remote server are scanned, and the URLs to files with desired data are returned. Lastly, these URLs are

displayed to the user or exported in other formats.

There is still much work to be done before going operational. My project is just one fundamental

part of the Observatory. Another key issue being solved by the SPDF is efficient conversion between file

formats. The overall project will greatly increase physicists’ potential to understand the Sun’s impact on

our outer atmosphere.

 3

Table of Contents
I. Introduction 3

A. Background 3

1. Describe the purpose of Code 632

2. Existing 632 Services

3. About the overall project

B. Motivations 4

1. Synchronization

2. Abstraction

3. Flexibility and Simplicity

C. Tools and Resources 5

1. XML

2. Python

3. FTP Data

II. The Schema and Data Model 5

A. Dataset Element 5

B. Instrument Element 9

C. Spacecraft Element 9

D. Datasite Element 10

III. Space Physics Dataset Browser 11

A. Phase 1: Getting Input from the Interface 11

B. Note: How does the time range get represented? 12

C. Phase 2: Navigating the Tree 12

D. Note: Walking the Data Site 13

E. Phase 3: Using the Results and Beyond 14

IV. XML Generation

V. Status and Suggestions for Improvements

VI. Conclusion

VII. Appendices

A. Index of Diagrams and Code Snippets

B. Sources of More Information

C. Terms and Acronyms

 4

1 Introduction

1.1 Background

 The interaction between the Earth’s upper atmosphere and the dynamic Sun is a crucial balance,

and it is pertinent that scientists monitor and study these phenomena. Physicists have been analyzing

minute changes in the magnetosphere region with the aide of special “eyes” in orbit. Satellites including

Geotail, Polar, ACE, and numerous others, allow them to monitor Earth’s shield of plasma with carefully

calibrated sensors. However, the raw data must first be processed and made easily available before the

researchers can incorporate it into their research. The Space Physics Data Facility (SPDF) in Code 632

performs part of this crucial task.

 The SPDF “has its primary intent to lead in the definition, development, operation and promotion

of collaborative efforts in the collection and utilization of space physics data and models” (SPDF). The

two central data gathering services currently available to researchers are CDAWeb and SSCWeb. The

Coordinated Data Analysis Web (CDAWeb) service offers a dazzling array of data comparison and

plotting capabilities for numerous datasets from orbiting spacecraft. Physics researchers simply select

data sources and specify variables, and the results are plotted in the appropriate graphical form. The

Satellite Situation Center Web (SSCWeb) provides a way to determine through which magnetospheric

region a certain spacecraft has or will pass. This information determines, among other things, whether

solar activity has interfered with results or will cause damage to spacecraft. With access to CDAWeb and

SSCWeb, research scientists around the world gain significant insight into the inner workings of the

upper atmosphere, ionosphere, and magnetosphere.

 Robert Candey, my advisor, has proposed a new addition to the services provided by the SPDF

that offers even wider access to data and more capability for its analysis. This service will search through

a wealth of data and ultimately present it in any desired science data format such as CDF or HDF or FITS

and plot it through the CDAWeb service. A researcher’s job will be greatly simplified, as this one

interface would combine all of the data from multiple sources, which he or she would have had to consult

 5

before. One fundamental piece of a future Virtual Observatory, which I was responsible for, is this

collection of the data from multiple sources for further processing. It is this part on which I will now

focus.

1.2 Issues and Motivations

In considering the data gathering process, one major issue is the synchronization of the sources of

raw satellite data. With more data comes different ways to store data. Certain questions surface: How is

the hierarchy of directories structured on a remote server? What file naming conventions do files in each

and every dataset follow? In which data format are the files stored? If the data servers were all managed

by a single organization, this could be done fairly easily. However, this is certainly not the case. Some

important space physics data stores are managed by external organizations, not by NASA. One example

is the TIMED satellite that is run out of the Advanced Physics Laboratory at Johns Hopkins University.

If these crucial sources were incorporated into the easy-to-use Observatory framework, the researcher’s

perspective would be much broadened. The key to science is the availability to consult multiple sources

of quality data, and this was considered.

Another major motivation of the project is abstraction. The user of this system should not be

required to know where or how the source data is stored. Given the name of a spacecraft’s dataset, a time

range, and a desired output format, it is the system’s task to search through as much source data as

possible, combine it, and present it in the best possible way. A researcher can then focus on space physics

theory and ignore the implementation details. Additionally, the user would not be given the opportunity

to tamper, accidentally or otherwise, with the data site. This is a fundamental aspect of data modeling.

It is crucial to keep any data model representing distributed datasets as simple as possible but also

to make it flexible. Keeping this in mind, the most important attributes of a dataset have been considered,

and the way each attribute is stored preserves flexibility. This simplicity and flexibility allows both data

users and maintainers to perform their tasks more quickly and easily. In considering this and the other

issues and motivations, suitable software tools have been selected for the project.

 6

1.3 Tools and Resources

For a simple, flexible way to synchronize various distributed datasets, the natural choice was to

use metadata in the form of Extensible Markup Language (XML). XML is a series of nested “tags” that

describe the way that certain pieces of data are structured. For my project, I decided to use XML to

describe a remote server’s collection of space physics datasets. A benefit of XML is its natural tree

structure (root, parent, child), which can be used to organize the process. This kind of methodology is

given the name of Document Object Model (DOM), and is an official specification of the W3C. I used

this in both the User Interface (Browser) and the actual data server search algorithm. More about this will

be presented below under “The Schema and Data Model” and in the discussion of the Interface.

As far as which programming language suits the task, I chose to use Python (version 2.3). The

latest version of Python, combined with the useful PyXML and Tix modules, offers multiple methods

with which to process XML efficiently. It also offers an object-oriented framework that makes extensive

use of inheritance and polymorphism. Functional programming constructs such as mapping a function

onto a list, lambda forms of functions (i.e. f x = x + 1, instead of f(x) = x + 1), and list comprehensions

also simplify programs written in the language. The most important feature of Python is the short

learning curve and ease with which development can be accomplished. Java development generally takes

more time and strategy.

There are three main parts of the project: the Dataset Browser, the Dataset Finder, and the Dataset

Editor. During their development, I was able to test my ideas with datasets available through anonymous

FTP and then extend this to as many datasets as possible. All in all, the project’s development process

went quickly with these tools and resources. Now, I shall proceed to describe the process below.

2 The Schema and Data Model

2.1 Dataset Element

 Any data model considers the basic attributes needed to represent a data object. Name and

location are good starting attributes for the model of a dataset; these are crucial to any kind of search.

 7

/sample2
 /1997
 /1998
 /1999
 data…

/sample3
 /1997
 /1998
 /001
 /015
 /120
 data…

/sample1
 data… <subdividedby>none</subdividedby>

<subdividedby>year_none</subdividedby>

<subdividedby>year_*_none</subdividedby>

Figure 1: Subdirectory Hierarchy Element
The hierarchy of a datasets is a minor piece of information but is necessary

to limit requests on the remote data server.

The search algorithm needs to know exactly at which directory to start and exactly what data item is

requested. If this were not provided, a remote server would receive many more queries than needed to

find the requested dataset. Once the exact path to a dataset and its unique descriptor are known, the

subdirectories must be searched. The remote server is not intelligent at all, so the schema must provide it

with more basic instructions.

 One set of instructions is the hierarchy of a dataset’s subdirectories, stored in the subdividedby

element. The data could all be clumped into the single base directory or could be separated by year and

then day of year as

an example. This

piece of information

is encoded into a

string where a list of

underscore-separated

keywords is stored.

Among keywords

are year, month, day

for directories, none

for the stopping

directory, and an asterisk as a wild card. Figure 1 gives several examples of subdirectory hierarchies.

 Next, the search algorithm needs to know how files in a certain dataset directory are named. In a

perfect world, all files would follow the same conventions, but this is not the case. Datasets use store data

in various time intervals from seconds to days to Bartel rotations (27 days) to even entire years at once. In

order to handle this, a filename element is stored in the XML dataset. This element, summarized in

Figure 2, uses regular expressions to match a specific file name pattern given by a coded string. A file

must match this exactly or it will not be considered. Now, every alphanumeric character and some

symbols are matched as is, but special codes, created by a percent sign then letter, fill in dates and other

 8

variable fields. This element is very flexible. For instance, if the data has different data formats, a “.%v”

can pick up data files with any extension provided that the rest matches. This is summarized in Figure 2

below.

 A third piece of helpful dataset information is the time range for which data is available from a

specific dataset. This is stored in the timerange element, which consists of a single tag with three

attributes. These attributes are start time, stop time, and optional time units. The start and stop times are

strings in either “%Y%m%d”, “%Y%j”, “%Y%m%d%H%M%S”, or “%Y%j%H%M%S” (note that

spaces and hyphens are ignored). The units attribute is only relevant when you use units other than these

standards, such as Bartels. Bartels are used to represent a single solar rotation and approximate to a

period of 27 days. Some datasets are still operational and near current data is available. For this, the

string “LATEST” will allow users to see new files without regenerating XML each time. In addition to

providing the search algorithm with useful information, the timerange element defines an upper and lower

limit on the data that the client program will search. For example, if an instrument was not calibrated

ac %Y%m%d %v .cdf k0 epm

example: ac_k0_epm_2002 07 29_v03.cdf

key param. instrument date and time version # data format spacecraft

i1 %Y%j%H%M%S %v .cdf av odg

example: i1_av_odg_1974 015 05 30 06_v03.cdf

key param. instrument date and time version # data format spacecraft

%Y%m %v sample

example: sample_1974 04.dat

dataset date and time data format

Figure 2: File Naming Conventions
The file naming conventions that are followed by data stores vary greatly. The <filename>

tag encodes this flexibly into the XML, using codes from the strptime module

Some Codes
%Y – four digit year

%m – two digit month
%d – two digit month day
%j – three digit year day

%v – variable field
_ - separator

 9

correctly at first and data earlier than a certain date is invalid, this element will tell the finder to ignore

that data. This is summarized in Figure 3 below.

 Now that we have this

required information, another

useful option is to include a

description element and a

couple more attributes. These

optional attributes do not have

to be anything in particular.

My work has included the

dataset’s data format (or file

extension) and its ID in the NSSDC Master Catalog, a database of NASA missions and datasets.

However, I am not currently using these for anything although the capability certainly exists. This data is

combined into the dataset element, summarized in Figure 4. The dataset node of the XML tree is a leaf

(no children), contains the description, subdividedby, filename, and timerange elements, and has the

two required attributes of name and path.

<dataset
 name = “ace_epm_k0”
 path = “ftp://cdaweb.gsfc.nasa.gov...epm”
 nssdc_id = “”
 dataformat = “cdf” >

<subdividedby>
 year_none
</subdividedby>

<filename>
 ac_k0_epm_%Y%m%d_%v.cdf
</filename>

<timerange
 start = “1997-08-31”
 stop = “9999-12-31 />

Figure 4: Dataset Element
This is a summary of the dataset element (gray denotes optional attributes).

<description>
 text
</description>

Figure 3: Time Range
The time range element defines an upper and lower limit on

the datasets searchable time window.

start units (optional)

2002-10-31

stop

LATEST days

<timerange start=”2002-10-31” stop=”LATEST” />

start units (optional)

2240

stop

2300 bartels

<timerange start=”2240” stop=”2300” units=”bartels”/>

 10

2.2 Instrument Element

 The dataset element is the fundamental building block, and the XML file could contain a list of

dataset elements alone. However, to accommodate users who wish to browse around more or do not

know the specific dataset descriptor, I

constructed a more complete hierarchy.

Some datasets are grouped into a larger

group classified by instrument or

instrument type. Perhaps a researcher

only cares about magnetometer data or

wants the data from ACE’s Cosmic Ray

Isotope Spectrometer. The instrument

element allows the data to be organized in this way and is summarized in Figure 5. It contains an optional

description, a list of dataset children, and name and code attributes.

2.3 Spacecraft Element

 At the next level upward, the spacecraft element groups either instrument elements or dataset

elements, depending on the

existence of instruments. The only

two major pieces of information

needed are the name attribute of

the spacecraft and its list of

children (datasets or instruments).

Additional attributes such as its

acronym and NSSDC Master

Catalog ID and a description can also be included. This is summarized in Figure 6.

<instrument
 name = “epm”
 code = “epm” >

<description>
 text
</description>

<dataset> … </dataset>

<dataset> … </dataset>

<dataset> … </dataset>

Figure 5: Instrument Element
This is a summary of the optional instrument element.

<spacecraft
 name = “Advanced Composition Explorer”
 code = “ace”
 nssdc_id = “” >

<description>
 text
</description>

<instrument> … </instrument>

<instrument> … </instrument>

<instrument> … </instrument>

Figure 6: Spacecraft Element
This is a summary of the spacecraft tag.

 11

2.4 Datasite Element

Finally, the spacecraft elements are grouped into a datasite element. This element represents a

complete remote data server where

many datasets are stored. Of

course, the datasite must have

attributes of name, server type,

mainaddress (its URL), and

datadir (where data is stored). In

the future, the type could be

extended to use protocols other than

FTP; however, that capability does

not yet exist. The element also includes a list of its spacecraft children and an optional description. I

would suggest that the description elements be used, as it is an easy way to provide extra useful

information to a client program.

2.5 Summary

The data model for these distributed datasets makes strong use of the XML concept of the

Document Object Model (DOM). Elements are treated as nodes in a large tree structure with a list of

children: elements, attributes, text, and other types. The root of this model is the datasite element with

some attributes and data elements along with a list of children: spacecraft elements. The spacecraft

element has informational items along with a list of children: instrument or dataset elements. The

optional instrument element has informational items along with a list of children: dataset elements.

Finally, the dataset element has no children but contains attributes, a description, a subdividedby string, a

filename pattern, and a timerange element.

<datasite
 name = “cdaweb”
 type = “ftp”
 mainaddress = “cdaweb.gsfc.nasa.gov”
 datadir = “pub/istp” >

<description>
 text
</description>

<spacecraft> … </spacecraft>

<spacecraft> … </spacecraft>

<spacecraft> … </spacecraft>

Figure 7: Datasite Element
This is a summary of the datasite element.

 12

3 Space Physics Dataset Browser

3.1 Phase 1: Getting Input from the Interface

The Space Physics Dataset Browser (Browser) is the front-end interface to the Dataset Finder

(Finder). It is written in Python using the Tk interface module (Tkinter). The Finder module does the

actual searching of the remote server using the XML files generated by another program called the Editor,

which is discussed later. The first step in the search process is to get input from the user. All that the

Finder requires is the specific dataset descriptor and two strings representing some form of time.

However, the Browser interface is designed to be much more user-friendly, relatively simple and

intuitive. It loads the XML files into DOM objects in memory, so that it is faster to navigate the

hierarchy of elements: datasite, spacecraft, instrument, and dataset. First, a list of datasite XML files

defined in the “datasites.pref” file is loaded and the spacecraft elements are listed in a selection box (Fig.

8-1). Additionally, general information is loaded into the result text box (Fig. 8-7). Note that the user

does not need to know anything about the datasite elements at all. This is abstraction at work.

 Once the spacecraft

has been selected, a list of its

datasets populates the second

selection box (Fig. 8-2).

Once a dataset is selected and

the “select” button is pressed,

the time fields become

active. At this point, the

program stores the dataset

node in question; no other

nodes are relevant at this

time. Now, the user fills in

Figure 8: Space Physics Dataset Browser
This screenshot shows the result of a typical search.

 13

the start time (Fig. 8-3) and stop time (Fig. 8-4). Most of what applied to the timerange element in

Section 2.1 applies. “LATEST” and “BEGINNING” are key words signifying the latest data and the

minimum allowable date respectively. The formats acceptable for input are the same ones as in the

timerange element. If the user wishes to use Bartels, he or she could simply type a “b” followed by the

rotation number, but the default is year-month-day. Now, the “verify” button (Fig. 8-6) will check to see

if the time range is valid and that the stop time comes after the start time. Any time that the verify routine

does not recognize is set to BEGINNING or LATEST, depending on the field. Once this is done, the user

clicks the final select button (Fig 8-6) and the search is performed. If the search is successful, the

resulting list of URLs is displayed and can be saved (Fig. 8-9). Two additional buttons (Fig. 8-8) allow

the user to navigate back up the tree. Also note that the instrument element is not currently used in the

Browser. Finally, the required input is sent on to the Space Physics Dataset Finder.

3.2 Note: How does the time range get represented?

At this point, you may be wondering how a string with characters becomes a time range object

and how the time range is implemented. First, the start and stop time strings are parsed using a pattern

(defined using the exact same notation as the filename element!). A module called “strptime” handles

this with the exception of a few special cases. This method produces a datetime object, which is an

improved time object, new in Python 2.3. The available dates range from Jan. 1, 0001 to Dec. 31, 9999,

whereas the old time object followed the limited C/Unix epoch time implementation. As a further

improvement, I wrote the timeRange class that represents a specific time interval. If the interval of the

user input overlaps with the interval of a file, the file will most likely contain data that the user is

requesting. The timeRange module will also extract times out of data URLs and handle useful

conversions. This approach turned out to be a simple and powerful strategy to use.

3.3 Phase 2: Navigating the Tree

The user has submitted a dataset descriptor and a time range to the Finder through some type of

interface, not necessarily the Browser described above. It is now the Finder’s job to return a list of data

file URLs matching those criteria. First, the Finder traverses the list of dataset elements in the desired

 14

XML document and searches using the dataset descriptor. Next, it calls upon the timeRange module to

convert the time input from a pair strings into a timeRange object. Once the dataset element and desired

time range are known, the program analyzes the main attributes of the dataset: remote path, subdirectory

hierarchy, time range, and file naming string. Up until this point, no remote server access has been

performed. The Finder now sends this information onto the Datasite Walk (discussed below) module,

which returns a list of file names from the remote server. This list is then scanned, and a time range is

extracted from each file name that matches the dataset’s filename element. If this range overlaps with the

requested time range, that means that the file contains desired data. Finally, the file names with

overlapping time ranges are now passed back to the user.

3.4 Note: Walking the Data Site

The Datasite Walk module requires four main pieces of data: the path where it should start, the

levels of subdirectories, a start time, and an end time. From the path, the algorithm can determine to

which server it should connect, how it should connect (currently, just FTP), and where the dataset

directory is. Once it arrives at the base directory, the routine traverses to the bottom-most level (“none”)

as defined in the hierarchy element. It does this by initiating a directory listing command (LIST for FTP)

and parsing out the names of files and subdirectories. Now, the time parameters are used to implement

searching shortcuts. For instance, if a subdirectory is divided by year, only years in the user-defined time

range are deemed relevant. This walk routine will not process this list; the filenames are simply passed

back to the caller, which will perform any processing. I chose to write this module in this way because it

is lightweight and relatively straightforward. Currently, this algorithm only works using File Transfer

Protocol; however, the layers of abstraction allow for the addition of other protocols.

Phase 3: Using the Results and Beyond

 From the Dataset Finder, the user receives a list of URLs to the data he or she requested.

Equipped with this information, the user could simply download the file from the remote data server.

However, another layer of processing could prove to be even more powerful. Such a program could

gather these data files and plot them through CDAWeb’s toolbox of plotting functions or convert the data

 15

into any format desirable. The goal is, then, the efficient collection of data files so that any higher-level

program would not need to concern itself with accessing numerous servers just to find data. The data will

be easily accessible to any researcher. Figure 9 summarizes the different layers of abstraction.

4 XML Generation: Space Physics Dataset Editor

4.1 The Problem

Up until this point, this discussion has assumed the presence of local XML files containing

metadata about datasites, spacecraft, instruments, and datasets. However, the focus will now shift to the

actual XML generation process. The tools for manipulating XML are drawn from the same sources as

before. Many different operations are now required in addition to parsing the XML into a DOM tree:

editing attributes and fields, adding elements as children, creating and importing new files, cloning

Dataset Browser
2. Displays data tree starting at spacecraft level.

Front-End User
12. Uses the URLs to collect data.

Dataset Finder
4. Find dataset element from dataset descriptor

ftpwalk

1. Selects spacecraft,
dataset, and a time range to
search.

3. Sends dataset descriptor
and strings representing
start and end times.

timeRange

5. time strings 6. time range
object

7. dataset info,
time range

8. list of files from
the remote path.

9. time extracted from
each file, discard files
outside of range.

10. results: a list of valid
URLs to the requested
data files

11. hyperlinks to remote
data files, can save results
as text.

Figure 9: Summary of the Dataset Browser Process
Each module (box) can act independently of the other modules.

 16

elements, and providing a quick method to browse this tree. In addition, it would be important to display

information from the remote server at the same time so that no other program (i.e. Internet Explorer) is

required. Some kind of auto-completion for elements (using remote server data) also proves to be helpful.

4.2 The Solution

To solve this, I created a companion to the Browser and Finder: the Space Physics Dataset Editor.

The best approach for this application was to start with two adjacent tree view interfaces, one for the local

XML data files and one for the remote server, that have expansion capabilities. In addition, context-

sensitive buttons allowed for quick manipulation of the XML Tree. Inheriting the Tree widget from the

Tix (addition to Tkinter) module, I created a class for each type of tree viewer and for a generic dialog

box that edits any element in the tree. This allows for much more code reuse.

First, the XML Tree Display (fig. 10) displays

the hierarchical structure of the local XML files

(defined in “datasites.pref”). Elements can be

expanded and contracted at will simply by clicking the

plus/minus buttons. The “Tree Operations” buttons all

perform an operation on the selected element while the

“New Datasite” buttons import new data files. Buttons

are fairly self-explanatory. “View” and “Edit” both

pop up the node-editing dialog (fig. 11), a generic

method to change an element’s attributes. “Remove”

will also delete datasite elements, but will not

physically remove the XML file from memory.

“Clone” generates a full copy of the selected element.

Figure 10: XML Tree Editor
This tool simplifies XML manipulation.

 17

“Add Child” will create a new sub element from scratch; it will prompt the user to complete the fields.

“From Scratch” asks for a new XML file in which to place a new datasite element while “From Local

File” simply adds a file to “datasites.pref”.

 The intelligent part of the Editor is the

use of a remote server Path Viewer (fig. 12) to

help auto-complete dialog fields. If both an

XML element and a remote server path are

selected and “Copy to XML” is activated, the

same “Add Child” dialog box pops up.

However, some fields will be already filled in

with guessed values based on context. This

feature is currently in the planning stage, but

once completed, the result is an easy method

Figure 11: XML Node Dialog
This is where fields are modified. If a remote path is also selected, these are guessed.

Figure 12: FTP Path Viewer
This tool gives the user a handy reference.

 18

to generate the XML documents that are used by the Dataset Browser.

5 Conclusion

5.1 Project Status and Suggestions for Improvements

The Space Physics Dataset Browser system is flexible enough to allow for as high a level of

usability as possible. What I have described is only the completed skeleton of its capabilities. One major

addition to this could be more use of the metadata. Each element could include additional attributes for

the benefit of Browser users. For example, spacecraft elements might incorporate a link to its website, the

team in charge of it, and any useful fact. To accomplish this, descriptions could be generated from the

NSSDC Mater Catalog or another database. Use of these XML files is not limited to the Dataset

Browser, however. Anyone who uses the data would benefit from a file describing the structure of these

data sites. By simply applying a style sheet to these files, instant documentation could be displayed for

those browsing a data site. Another improvement involves a more automated way to generate the XML

files. A routine could walk an entire remote server and analyze its structure every so often. New datasets

would be discovered and incorporated into the system. However, some data sites are not organized well

enough to do this, so some human verification should be involved in this process. Other future avenues

of exploration include the selection of multiple datasets at once, bundling the resulting data into a single.

tar.gzip file, support for VMS servers and HTTP, substituting a web service for the current Browser, and

connecting it to SPDF’s collection of Master CDF files. There are more than likely other ways to

improve upon the Browser system’s methods; these are only a few.

5.2 Virtual Observatories and Beyond

Through my experience with this project, I have realized how much of a demand there is for a

large collection of distributed science data in one source. Obviously, this is simply not physically

possible, even with today’s availability of disk space. However, with such a tool as the vast worldwide

network, this can be achieved virtually. As I have already mentioned, the future Space Physics Virtual

 19

Observatory will be a powerful web service combining the CDAWeb system and Dataset Finder. There

is still much work to be done before going operational. The Browser system is just one fundamental part

of this. Another key issue is the efficient conversion from one data format to another. The software

development team at the SPDF is currently making significant progress in these areas. The Observatory

project will greatly increase physicists’ potential to understand the Sun’s impact on our near-Earth

environment. Combined with other initiatives for Virtual Observatories in the science community, Space

and Earth Science will continue to move into new frontiers of understanding.

 20

Appendix A: Index of Figures
Schema and Data Model
Figure 1: Subdirectory Hierarchy Element 6
Figure 2: File Naming Conventions 7
Figure 3: Time Range 8
Figure 4: Dataset Element 8
Figure 5: Instrument Element 9
Figure 6: Spacecraft Element 9
Figure 7: Datasite Element 10
Space Physics Dataset Browser
Figure 8: Space Physics Dataset Browser 11
Figure 9: Summary of the Dataset Browser Process 14
XML Generation: Space Physics Dataset Editor
Figure 10: XML Tree Editor 15
Figure 11: XML Node Dialog 16
Figure 12: Remote Server Tree Viewer 17

Appendix B: Sources of More Information
CDAWeb: http://cdaweb.gsfc.nasa.gov/
DOM: http://www.w3.org/TR/DOM-Level-2-Core/ explains all the technical details.
Python: Python.org is the bleeding edge source. Documentation is extensive and there is a whole

community of devoted developers. Impressive little language.
PyXML: Pyxml.sourceforge.net is the source. A great tutorial for processing XML with Python

can be found at http://pyxml.sourceforge.net/topics/howto/xml-howto.html
SSCWeb: http://sscweb.gsfc.nasa.gov/
SPDF (632): http://spdf.gsfc.nasa.gov
TIMED http://www.timed.jhuapl.edu/
Tkinter: http://www.pythonware.com/library/tkinter/introduction/
Tix: http://tix.sourceforge.net
XML: http://www.w3.org/XML/

Appendix C: Terms and Acronyms
ACE Advanced Composition Explorer
CDAWeb Coordinated Data Analysis Web
DOM Document Object Model
FTP File Transfer Protocol
HTTP HyperText Transfer Protocol
NSSDC National Space Science Data Center
SSCWeb Satellite Situation Center Web
SPDF Space Physics Data Facility
TIMED Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics
URL Uniform Resource Locator
XML eXtensible Markup Language

Final Technical Notes and Source Code Available Upon Request of Robert M. Candey
(Robert.M.Candey@nasa.gov). Special Thanks to Robert Candey, Bob McGuire and the
632 Software Development Team, Dan Krieger, Michael Hartman, Laureen Summers and

 21

LaTasha Mason from AAAS, Dillard Menchan, my new friends at Goddard, and my
parents for years of support.

