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Abstract 
  The Space Physics Data Facility (SPDF) manages and distributes a variety of data products 

geared toward the study of plasma around the Earth and its interaction with solar phenomena.  Such 

products include CDAWeb, a user-friendly web service that plots many variables over time, and 

SSCWeb, a service that can locate a certain spacecraft in the magnetosphere.  These two systems alone 

give researchers in physics enormous insight into the turbulent frontier between Earth and our Sun.  My 

mentor has proposed a new service as part of a future Space Physics Virtual Observatory, designed to 

incorporate and augment already existing systems.  The goal is to combine abstraction with depth.  The 

user of this system will not need to know where or how the source data is stored.  Given the name of a 

spacecraft ‘s dataset, a time range, and a desired output format, it is the system’s task to search through as 

much source data as possible, combine it, and present it in the best possible way.  A researcher can focus 

on space physics research and ignore the implementation details. 

 However, the servers containing the source data, owned by several different organizations, are not 

synchronized.  My project was to develop a flexible schema, using XML, describing how to find desired 

files in a specific dataset.  In addition to providing a means to generate XML files for each data site, I was 

to use these files to limit search time and server load.  The XML files, once generated, provide an instant 

tree hierarchy to search, performing most of the work without any impact on the server itself.   

 The heart of my project, dubbed the “Space Physics Dataset Browser”, consists of four major 

phases.  First, input is gathered from the user interface, which allows a user to navigate through the entire 

XML tree structure with ease.  Second, a dataset descriptor and time range is sent into the search method.  

This search returns a full path to the desired dataset on a remote server.  Third, directory listings on the 

remote server are scanned, and the URLs to files with desired data are returned.  Lastly, these URLs are 

displayed to the user or exported in other formats. 

There is still much work to be done before going operational.  My project is just one fundamental 

part of the Observatory.  Another key issue being solved by the SPDF is efficient conversion between file 

formats.  The overall project will greatly increase physicists’ potential to understand the Sun’s impact on 

our outer atmosphere. 
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1 Introduction 

1.1 Background 

 The interaction between the Earth’s upper atmosphere and the dynamic Sun is a crucial balance, 

and it is pertinent that scientists monitor and study these phenomena.  Physicists have been analyzing 

minute changes in the magnetosphere region with the aide of special “eyes” in orbit.  Satellites including 

Geotail, Polar, ACE, and numerous others, allow them to monitor Earth’s shield of plasma with carefully 

calibrated sensors.  However, the raw data must first be processed and made easily available before the 

researchers can incorporate it into their research.  The Space Physics Data Facility (SPDF) in Code 632 

performs part of this crucial task. 

 The SPDF “has its primary intent to lead in the definition, development, operation and promotion 

of collaborative efforts in the collection and utilization of space physics data and models” (SPDF).  The 

two central data gathering services currently available to researchers are CDAWeb and SSCWeb.  The 

Coordinated Data Analysis Web (CDAWeb) service offers a dazzling array of data comparison and 

plotting capabilities for numerous datasets from orbiting spacecraft.  Physics researchers simply select 

data sources and specify variables, and the results are plotted in the appropriate graphical form.  The 

Satellite Situation Center Web (SSCWeb) provides a way to determine through which magnetospheric 

region a certain spacecraft has or will pass.  This information determines, among other things, whether 

solar activity has interfered with results or will cause damage to spacecraft.  With access to CDAWeb and 

SSCWeb, research scientists around the world gain significant insight into the inner workings of the 

upper atmosphere, ionosphere, and magnetosphere. 

 Robert Candey, my advisor, has proposed a new addition to the services provided by the SPDF 

that offers even wider access to data and more capability for its analysis.  This service will search through 

a wealth of data and ultimately present it in any desired science data format such as CDF or HDF or FITS 

and plot it through the CDAWeb service.  A researcher’s job will be greatly simplified, as this one 

interface would combine all of the data from multiple sources, which he or she would have had to consult 
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before.  One fundamental piece of a future Virtual Observatory, which I was responsible for, is this 

collection of the data from multiple sources for further processing.  It is this part on which I will now 

focus. 

1.2 Issues and Motivations 

In considering the data gathering process, one major issue is the synchronization of the sources of 

raw satellite data.  With more data comes different ways to store data.  Certain questions surface: How is 

the hierarchy of directories structured on a remote server?  What file naming conventions do files in each 

and every dataset follow?  In which data format are the files stored?   If the data servers were all managed 

by a single organization, this could be done fairly easily.  However, this is certainly not the case.  Some 

important space physics data stores are managed by external organizations, not by NASA.  One example 

is the TIMED satellite that is run out of the Advanced Physics Laboratory at Johns Hopkins University.  

If these crucial sources were incorporated into the easy-to-use Observatory framework, the researcher’s 

perspective would be much broadened.  The key to science is the availability to consult multiple sources 

of quality data, and this was considered. 

Another major motivation of the project is abstraction.  The user of this system should not be 

required to know where or how the source data is stored.  Given the name of a spacecraft’s dataset, a time 

range, and a desired output format, it is the system’s task to search through as much source data as 

possible, combine it, and present it in the best possible way.  A researcher can then focus on space physics 

theory and ignore the implementation details.  Additionally, the user would not be given the opportunity 

to tamper, accidentally or otherwise, with the data site.  This is a fundamental aspect of data modeling. 

It is crucial to keep any data model representing distributed datasets as simple as possible but also 

to make it flexible.  Keeping this in mind, the most important attributes of a dataset have been considered, 

and the way each attribute is stored preserves flexibility.  This simplicity and flexibility allows both data 

users and maintainers to perform their tasks more quickly and easily.  In considering this and the other 

issues and motivations, suitable software tools have been selected for the project. 
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1.3 Tools and Resources 

For a simple, flexible way to synchronize various distributed datasets, the natural choice was to 

use metadata in the form of Extensible Markup Language (XML).  XML is a series of nested “tags” that 

describe the way that certain pieces of data are structured.  For my project, I decided to use XML to 

describe a remote server’s collection of space physics datasets.  A benefit of XML is its natural tree 

structure (root, parent, child), which can be used to organize the process.  This kind of methodology is 

given the name of Document Object Model (DOM), and is an official specification of the W3C.  I used 

this in both the User Interface (Browser) and the actual data server search algorithm.  More about this will 

be presented below under “The Schema and Data Model” and in the discussion of the Interface. 

As far as which programming language suits the task, I chose to use Python (version 2.3).  The 

latest version of Python, combined with the useful PyXML and Tix modules, offers multiple methods 

with which to process XML efficiently.  It also offers an object-oriented framework that makes extensive 

use of inheritance and polymorphism.  Functional programming constructs such as mapping a function 

onto a list, lambda forms of functions (i.e. f x = x + 1, instead of f(x) = x + 1), and list comprehensions 

also simplify programs written in the language.  The most important feature of Python is the short 

learning curve and ease with which development can be accomplished.  Java development generally takes 

more time and strategy. 

There are three main parts of the project: the Dataset Browser, the Dataset Finder, and the Dataset 

Editor.  During their development, I was able to test my ideas with datasets available through anonymous 

FTP and then extend this to as many datasets as possible.  All in all, the project’s development process 

went quickly with these tools and resources.  Now, I shall proceed to describe the process below. 

2 The Schema and Data Model 

2.1 Dataset Element 

 Any data model considers the basic attributes needed to represent a data object.  Name and 

location are good starting attributes for the model of a dataset; these are crucial to any kind of search.  
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/sample2 
     /1997 
     /1998 
     /1999 
          data… 

/sample3 
     /1997 
    /1998 
         /001 
         /015 
         /120 
               data… 

/sample1 
     data… <subdividedby>none</subdividedby> 

<subdividedby>year_none</subdividedby> 

<subdividedby>year_*_none</subdividedby> 

Figure 1: Subdirectory Hierarchy Element 
The hierarchy of a datasets is a minor piece of information but is necessary 

to limit requests on the remote data server. 

The search algorithm needs to know exactly at which directory to start and exactly what data item is 

requested.  If this were not provided, a remote server would receive many more queries than needed to 

find the requested dataset.  Once the exact path to a dataset and its unique descriptor are known, the 

subdirectories must be searched.  The remote server is not intelligent at all, so the schema must provide it 

with more basic instructions.   

 One set of instructions is the hierarchy of a dataset’s subdirectories, stored in the subdividedby 

element.  The data could all be clumped into the single base directory or could be separated by year and 

then day of year as 

an example.  This 

piece of information 

is encoded into a 

string where a list of 

underscore-separated 

keywords is stored.  

Among keywords 

are year, month, day 

for directories, none 

for the stopping 

directory, and an asterisk as a wild card.  Figure 1 gives several examples of subdirectory hierarchies. 

 Next, the search algorithm needs to know how files in a certain dataset directory are named.  In a 

perfect world, all files would follow the same conventions, but this is not the case.  Datasets use store data 

in various time intervals from seconds to days to Bartel rotations (27 days) to even entire years at once. In 

order to handle this, a filename element is stored in the XML dataset.  This element, summarized in 

Figure 2, uses regular expressions to match a specific file name pattern given by a coded string.  A file 

must match this exactly or it will not be considered.  Now, every alphanumeric character and some 

symbols are matched as is, but special codes, created by a percent sign then letter, fill in dates and other 
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variable fields.  This element is very flexible.  For instance, if the data has different data formats, a “.%v” 

can pick up data files with any extension provided that the rest matches. This is summarized in Figure 2 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 A third piece of helpful dataset information is the time range for which data is available from a 

specific dataset.  This is stored in the timerange element, which consists of a single tag with three 

attributes.  These attributes are start time, stop time, and optional time units.  The start and stop times are 

strings in either “%Y%m%d”, “%Y%j”, “%Y%m%d%H%M%S”, or “%Y%j%H%M%S” (note that 

spaces and hyphens are ignored).  The units attribute is only relevant when you use units other than these 

standards, such as Bartels.  Bartels are used to represent a single solar rotation and approximate to a 

period of 27 days.  Some datasets are still operational and near current data is available.  For this, the 

string “LATEST” will allow users to see new files without regenerating XML each time.  In addition to 

providing the search algorithm with useful information, the timerange element defines an upper and lower 

limit on the data that the client program will search.  For example, if an instrument was not calibrated 

ac %Y%m%d %v .cdf k0 epm 

example: ac_k0_epm_2002 07 29_v03.cdf 

key param. instrument date and time version # data format spacecraft 

i1 %Y%j%H%M%S %v .cdf av odg 

example: i1_av_odg_1974 015 05 30 06_v03.cdf 

key param. instrument date and time version # data format spacecraft 

%Y%m %v sample 

example: sample_1974 04.dat 

dataset date and time data format 

Figure 2: File Naming Conventions 
The file naming conventions that are followed by data stores vary greatly.  The <filename> 

tag encodes this flexibly into the XML, using codes from the strptime module 

Some Codes 
%Y – four digit year 

%m – two digit month 
%d – two digit month day 
%j – three digit year day 

%v – variable field 
_ - separator 
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correctly at first and data earlier than a certain date is invalid, this element will tell the finder to ignore 

that data.  This is summarized in Figure 3 below. 

 Now that we have this 

required information, another 

useful option is to include a 

description element and a 

couple more attributes.  These 

optional attributes do not have 

to be anything in particular.  

My work has included the 

dataset’s data format (or file 

extension) and its ID in the NSSDC Master Catalog, a database of NASA missions and datasets.  

However, I am not currently using these for anything although the capability certainly exists.  This data is 

combined into the dataset element, summarized in Figure 4.  The dataset node of the XML tree is a leaf 

(no children), contains the description, subdividedby, filename, and timerange elements, and has the 

two required attributes of name and path. 

 

 

 

 

 

 

 

 

 

 

<dataset 
 name = “ace_epm_k0” 
 path = “ftp://cdaweb.gsfc.nasa.gov...epm” 
 nssdc_id = “” 
 dataformat = “cdf” > 

<subdividedby> 
 year_none 
</subdividedby> 

<filename> 
 ac_k0_epm_%Y%m%d_%v.cdf 
</filename> 

<timerange 
 start = “1997-08-31” 
 stop = “9999-12-31 /> 

Figure 4: Dataset Element 
This is a summary of the dataset element (gray denotes optional attributes). 

<description> 
 text 
</description> 

Figure 3: Time Range 
The time range element defines an upper and lower limit on 

the datasets searchable time window. 

start units (optional) 

2002-10-31 

stop 

LATEST days 

<timerange start=”2002-10-31” stop=”LATEST” /> 

start units (optional) 

2240 

stop 

2300 bartels 

<timerange start=”2240” stop=”2300” units=”bartels”/> 
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2.2 Instrument Element 

 The dataset element is the fundamental building block, and the XML file could contain a list of 

dataset elements alone.  However, to accommodate users who wish to browse around more or do not 

know the specific dataset descriptor, I 

constructed a more complete hierarchy.  

Some datasets are grouped into a larger 

group classified by instrument or 

instrument type.  Perhaps a researcher 

only cares about magnetometer data or 

wants the data from ACE’s Cosmic Ray 

Isotope Spectrometer.  The instrument 

element allows the data to be organized in this way and is summarized in Figure 5.  It contains an optional 

description, a list of dataset children, and name and code attributes. 

2.3 Spacecraft Element 

 At the next level upward, the spacecraft element groups either instrument elements or dataset 

elements, depending on the 

existence of instruments.  The only 

two major pieces of information 

needed are the name attribute of 

the spacecraft and its list of 

children (datasets or instruments).  

Additional attributes such as its 

acronym and NSSDC Master 

Catalog ID and a description can also be included.  This is summarized in Figure 6. 

 

 

<instrument 
 name = “epm” 
 code = “epm” > 

<description> 
 text 
</description> 

<dataset> … </dataset> 

<dataset> … </dataset> 

<dataset> … </dataset> 

Figure 5: Instrument Element 
This is a summary of the optional instrument element. 

<spacecraft 
 name = “Advanced Composition Explorer” 
 code = “ace”  
 nssdc_id = “” > 

<description> 
 text 
</description> 

<instrument> … </instrument> 

<instrument> … </instrument> 
 
<instrument> … </instrument> 

 

Figure 6: Spacecraft Element 
This is a summary of the spacecraft tag. 
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2.4 Datasite Element 

Finally, the spacecraft elements are grouped into a datasite element.  This element represents a 

complete remote data server where 

many datasets are stored.  Of 

course, the datasite must have 

attributes of name, server type, 

mainaddress (its URL), and 

datadir (where data is stored).  In 

the future, the type could be 

extended to use protocols other than 

FTP; however, that capability does 

not yet exist.  The element also includes a list of its spacecraft children and an optional description.  I 

would suggest that the description elements be used, as it is an easy way to provide extra useful 

information to a client program. 

2.5 Summary 

The data model for these distributed datasets makes strong use of the XML concept of the 

Document Object Model (DOM).  Elements are treated as nodes in a large tree structure with a list of 

children: elements, attributes, text, and other types.  The root of this model is the datasite element with 

some attributes and data elements along with a list of children: spacecraft elements.  The spacecraft 

element has informational items along with a list of children: instrument or dataset elements.  The 

optional instrument element has informational items along with a list of children: dataset elements.  

Finally, the dataset element has no children but contains attributes, a description, a subdividedby string, a 

filename pattern, and a timerange element. 

 

 

<datasite 
 name = “cdaweb” 
 type = “ftp” 
 mainaddress = “cdaweb.gsfc.nasa.gov”  
 datadir = “pub/istp” > 

<description> 
 text 
</description> 

<spacecraft> … </spacecraft> 

<spacecraft> … </spacecraft> 
 
<spacecraft> … </spacecraft> 

 

Figure 7: Datasite Element 
This is a summary of the datasite element. 
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3 Space Physics Dataset Browser 

3.1 Phase 1: Getting Input from the Interface 

The Space Physics Dataset Browser (Browser) is the front-end interface to the Dataset Finder 

(Finder).  It is written in Python using the Tk interface module (Tkinter).  The Finder module does the 

actual searching of the remote server using the XML files generated by another program called the Editor, 

which is discussed later.  The first step in the search process is to get input from the user.  All that the 

Finder requires is the specific dataset descriptor and two strings representing some form of time.  

However, the Browser interface is designed to be much more user-friendly, relatively simple and 

intuitive.  It loads the XML files into DOM objects in memory, so that it is faster to navigate the 

hierarchy of elements: datasite, spacecraft, instrument, and dataset.  First, a list of datasite XML files 

defined in the “datasites.pref” file is loaded and the spacecraft elements are listed in a selection box (Fig. 

8-1).  Additionally, general information is loaded into the result text box (Fig. 8-7).  Note that the user 

does not need to know anything about the datasite elements at all. This is abstraction at work. 

 Once the spacecraft 

has been selected, a list of its 

datasets populates the second 

selection box (Fig. 8-2).  

Once a dataset is selected and 

the “select” button is pressed, 

the time fields become 

active.  At this point, the 

program stores the dataset 

node in question; no other 

nodes are relevant at this 

time.  Now, the user fills in 

Figure 8: Space Physics Dataset Browser 
This screenshot shows the result of a typical search. 
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the start time (Fig. 8-3) and stop time (Fig. 8-4).  Most of what applied to the timerange element in 

Section 2.1 applies.  “LATEST” and “BEGINNING” are key words signifying the latest data and the 

minimum allowable date respectively.  The formats acceptable for input are the same ones as in the 

timerange element.  If the user wishes to use Bartels, he or she could simply type a “b” followed by the 

rotation number, but the default is year-month-day.  Now, the “verify” button (Fig. 8-6) will check to see 

if the time range is valid and that the stop time comes after the start time.  Any time that the verify routine 

does not recognize is set to BEGINNING or LATEST, depending on the field.  Once this is done, the user 

clicks the final select button (Fig 8-6) and the search is performed.  If the search is successful, the 

resulting list of URLs is displayed and can be saved (Fig. 8-9).  Two additional buttons (Fig. 8-8) allow 

the user to navigate back up the tree.  Also note that the instrument element is not currently used in the 

Browser.  Finally, the required input is sent on to the Space Physics Dataset Finder. 

3.2 Note: How does the time range get represented? 

At this point, you may be wondering how a string with characters becomes a time range object 

and how the time range is implemented.  First, the start and stop time strings are parsed using a pattern 

(defined using the exact same notation as the filename element!).  A module called “strptime” handles 

this with the exception of a few special cases.  This method produces a datetime object, which is an 

improved time object, new in Python 2.3.  The available dates range from Jan. 1, 0001 to Dec. 31, 9999, 

whereas the old time object followed the limited C/Unix epoch time implementation.  As a further 

improvement, I wrote the timeRange class that represents a specific time interval.  If the interval of the 

user input overlaps with the interval of a file, the file will most likely contain data that the user is 

requesting.  The timeRange module will also extract times out of data URLs and handle useful 

conversions.  This approach turned out to be a simple and powerful strategy to use. 

3.3 Phase 2: Navigating the Tree 

The user has submitted a dataset descriptor and a time range to the Finder through some type of 

interface, not necessarily the Browser described above.  It is now the Finder’s job to return a list of data 

file URLs matching those criteria.  First, the Finder traverses the list of dataset elements in the desired 
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XML document and searches using the dataset descriptor.  Next, it calls upon the timeRange module to 

convert the time input from a pair strings into a timeRange object.  Once the dataset element and desired 

time range are known, the program analyzes the main attributes of the dataset: remote path, subdirectory 

hierarchy, time range, and file naming string.  Up until this point, no remote server access has been 

performed.  The Finder now sends this information onto the Datasite Walk (discussed below) module, 

which returns a list of file names from the remote server.  This list is then scanned, and a time range is 

extracted from each file name that matches the dataset’s filename element.  If this range overlaps with the 

requested time range, that means that the file contains desired data.  Finally, the file names with 

overlapping time ranges are now passed back to the user. 

3.4 Note:  Walking the Data Site 

The Datasite Walk module requires four main pieces of data: the path where it should start, the 

levels of subdirectories, a start time, and an end time.  From the path, the algorithm can determine to 

which server it should connect, how it should connect (currently, just FTP), and where the dataset 

directory is.  Once it arrives at the base directory, the routine traverses to the bottom-most level (“none”) 

as defined in the hierarchy element.  It does this by initiating a directory listing command (LIST for FTP) 

and parsing out the names of files and subdirectories.  Now, the time parameters are used to implement 

searching shortcuts.  For instance, if a subdirectory is divided by year, only years in the user-defined time 

range are deemed relevant.  This walk routine will not process this list; the filenames are simply passed 

back to the caller, which will perform any processing.  I chose to write this module in this way because it 

is lightweight and relatively straightforward.  Currently, this algorithm only works using File Transfer 

Protocol; however, the layers of abstraction allow for the addition of other protocols.  

Phase 3: Using the Results and Beyond 

 From the Dataset Finder, the user receives a list of URLs to the data he or she requested.  

Equipped with this information, the user could simply download the file from the remote data server.  

However, another layer of processing could prove to be even more powerful.  Such a program could 

gather these data files and plot them through CDAWeb’s toolbox of plotting functions or convert the data 
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into any format desirable.  The goal is, then, the efficient collection of data files so that any higher-level 

program would not need to concern itself with accessing numerous servers just to find data.  The data will 

be easily accessible to any researcher.  Figure 9 summarizes the different layers of abstraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 XML Generation: Space Physics Dataset Editor 

4.1 The Problem 

Up until this point, this discussion has assumed the presence of local XML files containing 

metadata about datasites, spacecraft, instruments, and datasets.  However, the focus will now shift to the 

actual XML generation process.  The tools for manipulating XML are drawn from the same sources as 

before.  Many different operations are now required in addition to parsing the XML into a DOM tree: 

editing attributes and fields, adding elements as children, creating and importing new files, cloning 

Dataset Browser 
2. Displays data tree starting at spacecraft level. 

Front-End User 
12.  Uses the URLs to collect data. 

Dataset Finder 
4. Find dataset element from dataset descriptor 

ftpwalk 

1. Selects spacecraft, 
dataset, and a time range to 
search. 
 

3. Sends dataset descriptor 
and strings representing 
start and end times. 

timeRange 

5. time strings 6. time range 
object 

7. dataset info, 
time range 

8. list of files from 
the remote path. 

9. time extracted from 
each file, discard files 
outside of range. 

10. results: a list of valid 
URLs to the requested 
data files 

11. hyperlinks to remote 
data files, can save results 
as text. 

Figure 9: Summary of the Dataset Browser Process 
Each module (box) can act independently of the other modules.  
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elements, and providing a quick method to browse this tree.  In addition, it would be important to display 

information from the remote server at the same time so that no other program (i.e. Internet Explorer) is 

required.  Some kind of auto-completion for elements (using remote server data) also proves to be helpful. 

4.2 The Solution 

To solve this, I created a companion to the Browser and Finder: the Space Physics Dataset Editor.  

The best approach for this application was to start with two adjacent tree view interfaces, one for the local 

XML data files and one for the remote server, that have expansion capabilities.  In addition, context-

sensitive buttons allowed for quick manipulation of the XML Tree.  Inheriting the Tree widget from the 

Tix (addition to Tkinter) module, I created a class for each type of tree viewer and for a generic dialog 

box that edits any element in the tree.  This allows for much more code reuse. 

First, the XML Tree Display (fig. 10) displays 

the hierarchical structure of the local XML files 

(defined in “datasites.pref”).  Elements can be 

expanded and contracted at will simply by clicking the 

plus/minus buttons.  The “Tree Operations” buttons all 

perform an operation on the selected element while the 

“New Datasite” buttons import new data files.  Buttons 

are fairly self-explanatory.  “View” and “Edit” both 

pop up the node-editing dialog (fig. 11), a generic 

method to change an element’s attributes.  “Remove” 

will also delete datasite elements, but will not 

physically remove the XML file from memory.  

“Clone” generates a full copy of the selected element.  

Figure 10: XML Tree Editor 
This tool simplifies XML manipulation. 
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“Add Child” will create a new sub element from scratch; it will prompt the user to complete the fields.  

“From Scratch” asks for a new XML file in which to place a new datasite element while “From Local 

File” simply adds a file to “datasites.pref”. 

 

 

 

 

 

 

 

 

 

 

 

 

 The intelligent part of the Editor is the 

use of a remote server Path Viewer (fig. 12) to 

help auto-complete dialog fields.  If both an 

XML element and a remote server path are 

selected and “Copy to XML” is activated, the 

same “Add Child” dialog box pops up.  

However, some fields will be already filled in 

with guessed values based on context.  This 

feature is currently in the planning stage, but 

once completed, the result is an easy method 

Figure 11: XML Node Dialog 
This is where fields are modified.  If a remote path is also selected, these are guessed. 

Figure 12: FTP Path Viewer 
This tool gives the user a handy reference. 
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to generate the XML documents that are used by the Dataset Browser. 

 

5 Conclusion 

5.1 Project Status and Suggestions for Improvements 

The Space Physics Dataset Browser system is flexible enough to allow for as high a level of 

usability as possible.  What I have described is only the completed skeleton of its capabilities.  One major 

addition to this could be more use of the metadata.  Each element could include additional attributes for 

the benefit of Browser users.  For example, spacecraft elements might incorporate a link to its website, the 

team in charge of it, and any useful fact.  To accomplish this, descriptions could be generated from the 

NSSDC Mater Catalog or another database.  Use of these XML files is not limited to the Dataset 

Browser, however.  Anyone who uses the data would benefit from a file describing the structure of these 

data sites.  By simply applying a style sheet to these files, instant documentation could be displayed for 

those browsing a data site.  Another improvement involves a more automated way to generate the XML 

files.  A routine could walk an entire remote server and analyze its structure every so often.  New datasets 

would be discovered and incorporated into the system.  However, some data sites are not organized well 

enough to do this, so some human verification should be involved in this process.  Other future avenues 

of exploration include the selection of multiple datasets at once, bundling the resulting data into a single. 

tar.gzip file, support for VMS servers and HTTP, substituting a web service for the current Browser, and 

connecting it to SPDF’s collection of Master CDF files.  There are more than likely other ways to 

improve upon the Browser system’s methods; these are only a few. 

5.2 Virtual Observatories and Beyond 

Through my experience with this project, I have realized how much of a demand there is for a 

large collection of distributed science data in one source.  Obviously, this is simply not physically 

possible, even with today’s availability of disk space.  However, with such a tool as the vast worldwide 

network, this can be achieved virtually.  As I have already mentioned, the future Space Physics Virtual 
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Observatory will be a powerful web service combining the CDAWeb system and Dataset Finder.  There 

is still much work to be done before going operational.  The Browser system is just one fundamental part 

of this.  Another key issue is the efficient conversion from one data format to another.  The software 

development team at the SPDF is currently making significant progress in these areas.  The Observatory 

project will greatly increase physicists’ potential to understand the Sun’s impact on our near-Earth 

environment.  Combined with other initiatives for Virtual Observatories in the science community, Space 

and Earth Science will continue to move into new frontiers of understanding. 
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Appendix B: Sources of More Information 
CDAWeb: http://cdaweb.gsfc.nasa.gov/ 
DOM: http://www.w3.org/TR/DOM-Level-2-Core/ explains all the technical details. 
Python: Python.org is the bleeding edge source.  Documentation is extensive and there is a whole 

community of devoted developers.  Impressive little language. 
PyXML: Pyxml.sourceforge.net is the source.  A great tutorial for processing XML with Python 

can be found at http://pyxml.sourceforge.net/topics/howto/xml-howto.html 
SSCWeb: http://sscweb.gsfc.nasa.gov/ 
SPDF (632): http://spdf.gsfc.nasa.gov 
TIMED http://www.timed.jhuapl.edu/ 
Tkinter: http://www.pythonware.com/library/tkinter/introduction/ 
Tix: http://tix.sourceforge.net 
XML: http://www.w3.org/XML/ 
 
Appendix C: Terms and Acronyms 
ACE  Advanced Composition Explorer 
CDAWeb Coordinated Data Analysis Web   
DOM  Document Object Model 
FTP  File Transfer Protocol 
HTTP  HyperText Transfer Protocol  
NSSDC  National Space Science Data Center 
SSCWeb Satellite Situation Center Web 
SPDF  Space Physics Data Facility 
TIMED  Thermosphere • Ionosphere • Mesosphere • Energetics and Dynamics 
URL  Uniform Resource Locator 
XML  eXtensible Markup Language 
 
Final Technical Notes and Source Code Available Upon Request of Robert M. Candey 
(Robert.M.Candey@nasa.gov).  Special Thanks to Robert Candey, Bob McGuire and the 
632 Software Development Team, Dan Krieger, Michael Hartman, Laureen Summers and 
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LaTasha Mason from AAAS, Dillard Menchan, my new friends at Goddard, and my 
parents for years of support. 


