
CESDIS TR 92-81, March, 1992

MR-CDF: Managing Multi-Resolution Scienti�c Data

1

Kenneth Salem

Department of Computer Science

University of Maryland

College Park, Maryland 20742

and

CESDIS

NASA Goddard Space Flight Center, Code 930.5

Greenbelt, MD 20771

Abstract

MR-CDF is a system for managing multi-resolution scienti�c data sets. It is an extension

of the popular CDF (Common Data Format) system. MR-CDF provides a simple functional

interface to client programs for storage and retrieval of data. Data is stored so that low-

resolution versions of the data can be provided quickly. Higher resolutions are also available,

but not as quickly. By managing data with MR-CDF, an application can be relieved of

the low-level details of data management, and can easily trade data resolution for improved

access time.

1

A shorter version of this paper appeared in the proceedings of the Goddard Conference on Mass Storage

Systems and Technologies, September, 1992, pages 101-111. The proceedings are NASA Conference Publication

3198.

MR-CDF: Managing Multi-Resolution Scienti�c Data

Abstract

MR-CDF is a system for managing multi-resolution scienti�c data sets. It is an extension

of the popular CDF (Common Data Format) system. MR-CDF provides a simple functional

interface to client programs for storage and retrieval of data. Data is stored so that low-

resolution versions of the data can be provided quickly. Higher resolutions are also available,

but not as quickly. By managing data with MR-CDF, an application can be relieved of

the low-level details of data management, and can easily trade data resolution for improved

access time.

1 Introduction

Scienti�c data management libraries, such as NASA's publicly-distributed Common Data For-

mat (CDF), implement simple data models that are tailored for scienti�c data. Data managed

using these libraries is machine-independent, portable, and self-describing. Access to the data

is performed through a set of interface functions that shield the details of storage and retrieval

from application programs. The libraries provide a common interface upon which portable,

application-speci�c tools (e.g., classi�ers, analysis packages, visualization and browsing tools)

can be implemented.

Because scienti�c data sets are often voluminous, it is desirable to make them available

at several di�erent resolutions. Preliminary examination, or browsing, of large amounts of

data often can be performed e�ciently using low-resolution data. Tentative analyses can be

performed using intermediate-resolutions, and the �nal analysis can be performed using the

data's full resolution. Lower resolution data is desirable during the preliminary stages because

it allows large volumes of data to be considered in a reasonable amount of time.

This paper describes a scienti�c data management library called MR-CDF (Multi-Resolution

Common Data Format) which permits multiple-resolution data sets to be manipulated through

a simple, functional interface. Application programs that use MR-CDF see a scienti�c data

model identical to that supported by CDF. When retrieving data, however, they are able to

specify a desired resolution level. Applications requiring full-resolution data can obtain it, while

those that can use lower resolutions are be able to do so simply and quickly.

MR-CDF uses a multi-stage representation for stored multi-resolution data. This is illus-

trated in Figure 1. A data set that is to be made available at R di�erent resolutions is decom-

* * * *

* * * *

Original Data

Stored Stages

Low-Resolution Data Full-Resolution DataIntermediate-Resolution Data

(Original Data)

+ +

Figure 1: The Multi-Stage Representation Used by MR-CDF

posed into R stages, each of which is stored. The decomposition is such that, by retrieving and

combining i stages MR-CDF can produce the data at one resolution, and by retrieving i + 1

stages it can produce the data at a higher resolution. By retrieving and combining all of the

stages, MR-CDF can produce an exact reconstruction of the data at its original, full resolution.

The process of retrieving and combining stages is completely transparent to the application that

requested the data, except that lower resolution requests can be satis�ed more quickly than

others.

There are several di�culties involved in providing an abstract interface for multi-resolution

data. The �rst is the wide variety of techniques that can be used to decompose data into stages

for storage. As we shall describe shortly, the decomposition process is essentially an iterative

lossy compression of the data. A wide variety of compression techniques are available, and

di�erent techniques are well-suited to di�erent types of data. Examples include various region

averaging algorithms, vector quantization, and quadtree-like methods [TiMa90, Ti89]. The

procedure for properly recombining the stages when data is retrieved depends on which of the

many possible compression techniques was originally used to decompose the data. Tying MR-

CDF to any particular compression technique would severely limit its applicability. Instead, MR-

CDF must be
exible enough to accommodate a wide variety of application-speci�ed techniques.

A second di�culty arises when applications make use of MR-CDF's simple selection facility

to retrieve only a portion of the stored data set. Ideally, MR-CDF would perform the selection

before recombining the stages to minimize the volume of data to be retrieved and recombined.

This may or may not be possible, depending on which technique was used to produce the

stored stages. Some compression techniques are better suited than others for producing easily-

manageable data, at least within the framework of MR-CDF. Although such problems need not

limit the functionality of MR-CDF, they may impact its e�ciency.

In the remainder of this paper, we describe the design, interface, and implementation of

the MR-CDF library. The next section provides an overview of the features MR-CDF and of

CDF, on which MR-CDF is based. Sections 3, 4 and 5 describe the relationship between data

compression and MR-CDF, and how multi-resolution data is stored into and retrieved from an

MR-CDF archive. MR-CDF's selection facility is discussed in Section 6. Finally, Section 7

describes its implementation, which uses CDF's data storage and retrieval facilities.

2 What Does MR-CDF Do?

Data management libraries such as CDF do not attempt to provide a solution to the entire

scienti�c data management problem. A CDF archive is designed to hold a set of related, similarly

organized scienti�c data, such as a set of images or a stream of sensor data. The important task

of organizing and managing multiple data sets is left to some type of meta-database, such as

those described in [RoCa90, ShWa88], and is beyond the scope of both CDF and MR-CDF.

What CDF does provide is a simple, abstract programming language interface to scienti�c

data. CDF's capabilities can be summarized as follows.

� CDF provides simple functional interfaces for application programming languages, through

which data can be organized, stored, and retrieved.

� CDF implements a data model tailored to scienti�c applications.

� CDF implements a selection facility which allows applications to specify portions of the

database to be retrieved or updated.

� CDF uses a space-e�cient internal data representation which is well-suited to many types

of scienti�c data.

Clearly, CDF provides only a subset of the facilties normally associated with database man-

agement systems. In particular, it does not provide a high-level language (like SQL) for de�ning

and manipulating data. However, CDF �ts quite naturally as a back-end data manager for many

existing scienti�c data visualization and analysis tools. Futhermore, it is publicly available (with

source-code) and is widely used both inside and outside NASA. Although the techniques de-

scribed in this paper are applicable to other data management systems, we focused on CDF for

the reasons above and because it is relatively simple to work with.

The MR-CDF library extends CDF to include support for multi-resolution data sets. It has

all of the capabilities of CDF plus the following.

� MR-CDF allows selected data to be retrieved several di�erent levels of resolution. Lower-

resolution data can be retrieved more quickly than higher-resolution, allowing applications

to trade-o� retrieval time for resolution.

� Multi-resolution retrieval in MR-CDF is progressive. This means that once a low resolution

version of the data has been retrieved, a higher resolution version of the same data can be

retrieved in less time than would be required to retrieve the higher resolution data from

scratch.

The multi-resolution capability of MR-CDF makes it simple for application programs to

select a resolution that is suitable for the task at hand. Progressive retrieval is well-suited

to applications such as data browsing. For example, an image browsing program can provide

access to many low-resolution images quickly. When an interesting image is found, a progressive

retrieval capability allows the browser to provide a higher-resolution version of the interesting

image without retrieving the information contained in the low-resolution image a second time.

2.1 CDF

The MR-CDF library is based on CDF (Common Data Format) software[Tr90, TrGo90], which

is designed to provide a simple, abstract interfact to scienti�c data. CDF includes interfaces

for C and Fortran applications, and is publicly distributed by NASA through the National

Space Science Data Center. Since MR-CDF provides a superset of the capabilities of CDF, the

following brief description of CDF applies to MR-CDF as well.

Logically, a CDF archive consists of a set of d-dimensional records and a set of variables, or

parameters. Each variable may have a value at every point in each record's d-dimensional data

space. The number of dimensions, d, and their sizes are speci�ed at the time the CDF archive

is created. However, variables added or deleted at any time.

Each variable is typed, and all of a variable's values are of that type. A variety of types are

supported, including
oating point and integer numbers of various sizes. Array types are also

supported.

When a CDF variable is de�ned, it is associated with one or more of the dimensions of the

data space. A variable's value is only permitted to vary along the dimensions with which it is

associated. This mechanism allows CDF to store repeated variable values only once. This can

result in tremendous savings of space in scienti�c data sets, where repeated values are commonly

found.

As a simple example, consider a 3-dimensional CDF with four variables representing latitude,

longitude, pressure (altitude), and temperature. Suppose that the latitude, longitude, and

pressure variables are each associated with a (unique) dimension of the CDF, and that the

temperature variable is associated with all three dimensions. Each point in the data space

describes the the atmospheric temperature at a particular latitude, longitude and pressure.

Such a CDF, with two records, is illustrated in Figure 2.

CDF provides a simple selection facility. When storing or retrieving data from a CDF

variable, an application must specify a range along each dimension of the archive as well as

the name of the variable. The variable's values within the speci�ed range are then transferred

between the CDF archive and an application bu�er. The example in Figure 2 shows how

an application could retrieve atmospheric temperature data for a speci�ed range of latitude,

longitude, and pressure. The selection facility also allows the application to specify a set of

records whose data is of interest.

CDF also allows attribute-value pairs to be associated with variables, with records, or with

the entire archive. One use of attributes is to store meta-data. For example, the temperature

variable can be given an attribute called \instrument", whose value would be the name of the

instrument that was used to collect the data.

All access to the data in a CDF is performed through a set of interface functions. Functions

also exist for creating, retrieving, and storing attribute values, for creating new variables, and

for obtaining general information about an archive, such as its dimensionality or the names of

the variables it stores.

2.2 Multi-Resolution Data

Figure 3(a) shows a plot of some time-series data representing a hypothetical measured quantity

\MEAS". Data of this type might be stored as a variable in a one-dimensional CDF archive.

For the purposes of this example, suppose that the MEAS variables is of the CDF-de�ned

oating-point type \REAL-4". We will use this example to describe how multi-resolution data

in MR-CDF is viewed by application programs.

X

Z

Y

(Longitude)

(Latitude)

(Pressure)

X

Z

Y

(Longitude)

(Latitude)

(Pressure)

Selected Region

 FIRST
RECORD

SECOND
RECORD

Figure 2: Two Records of A Three Dimensional CDF and a Region Speci�ed by Ranges of X,

Y, and Z Coordinates

MEAS

TIME

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

10.00 20.00 30.00 40.00

MEAS

TIME

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

10.00 20.00 30.00 40.00

MEAS

TIME

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

10.00 20.00 30.00 40.00

(a) Full Resolution (b) Low Resolution (c) Medium Resolution

Figure 3: A Simple Time-Series Data Set

MR-CDF adds progressive, multi-resolution retrieval capability to the capabilities of the

CDF library. In MR-CDF, one or both of the variables in our example could be stored as multi-

resolution variables. When a multi-resolution variable is created in an MR-CDF archive, the

number of resolutions at which it can be made available is de�ned. Applications retrieve the

values of multi-resolution variables exactly as they would a single-resolution variable, except the

desired resolution level must be speci�ed as well. A resolution level is speci�ed as an integer

between zero and the the number of resolutions de�ned for that variable, minus one. Smaller

numbers represent lower resolutions.

Suppose that \MEAS" is stored as a variable with three possible resolutions. If an application

retrieved \MEAS" at resolution zero, it might receive the data plotted in Figure 3(b). Resolution

one data might look as plotted in Figure 3(c), while resolution two data would match the full-

resolution data in Figure 3(a) exactly.

An important feature of MR-CDF is that the application will receive the same volume and

type of data, regardless of the resolution level requested. In our example, the application can

expect to receive ten REAL-4 values, regardless of resolution. This greatly simpli�es data

handling in MR-CDF applications. From the application's perspective, the advantage of lower

resolution data is that MR-CDF can provide it more quickly. Although the volume of data

passed to the application is independent of the resolution, MR-CDF needs to retrieve less data

from its archive to produce the lower resolutions.

The low resolution data in Figure 3(b) were obtained by averaging groups of four values from

the original series (Figure 3(a)) and replacing the values in each group by their average. This

averaging procedure is a form of lossy data compression, since the low resolution series can be

represented using a quarter of the values required for the original series. MR-CDF is speci�cally

designed to manage multi-resolution data that is produced by applying lossy compression to the

full-resolution data. Of course, there are many more e�ective and sophisticated compression

techniques than the averaging procedure used in the example. However, we will continue with

this example in the following sections because it is simple to describe.

3 Data Compression and MR-CDF

Multi-resolution data can be produced from single resolution data by applying lossy compression

one or more times. If compression is applied properly, the result is several stages of compressed

data which can be decompressed and combined to produce the original data set at various

resolutions. This process of decompression and recombination is central to MR-CDF.

Many types of lossy data compression have been developed, and di�erent types are well-

suited to di�erent types of data. The purpose of MR-CDF is not to de�ne a new compression

technique, nor to specify a particular technique that must be used to produce the multi-resolution

data. Instead, MR-CDF is designed to be
exible enough to incorporate multi-resolution data

produced by a wide variety of compression techniques.

Data compression is not performed by the MR-CDF library. Instead, it is assumed that

the compressed data is produced externally and then stored in the MR-CDF archive. MR-

CDF performs the decompression and combination of the stored data in response to application

requests.

In principle, it would be possible for compression to be implemented within MR-CDF. In

an ideal scenario, data would be supplied to MR-CDF in its original full-resolution form, and

would be available to applications at several resolutions. In practice, however, compression of

the data is often much more time consuming than decompression. Many compression algorithms

are best performed on highly parallel machines or with special purpose hardware. For example,

compressing data using vector quantization involves vectorizing the input data and comparing

each vector against a \codebook" of vectors to �nd the closest match. Using parallel hardware,

the input vector can be compared against all of the codebook entries simultaneously. Decom-

pressing the data involves much less work, since only a simple lookup in the codebook is all that

is required to recreate each vector.

Although MR-CDF does not perform data compression, it supports a very general com-

pression model so as to restrict as little as possible the types of compression algorithms whose

output can be managed by the library. MR-CDF's decompression procedure is actually a general

framework which can be customized to support data produced by a wide class of compression

(STAGE-0)

Compressed
 Data

 Original
 Data

 Iterative
Compression
 Algorithm

(STAGE-1)

Compressed
 Data

(STAGE-L)

Compressed
 Data

MR-CDF
 Library

MR-CDF
 archive

Decompression
 Functions

INTERNAL TO MR-CDFEXTERNAL TO MR-CDF

Figure 4: Creating Data for MR-CDF

techniques.

4 Producing Data for MR-CDF

Figure 4 illustrates how data suitable for progressive, multi-resolution retrieval is produced and

stored in MR-CDF. An iterative compression technique (described below) is applied to the

original full-resolution data, resulting in several stages of compressed data. The compressed

data are stored in the MR-CDF archive. The stages are such that MR-CDF will be able to

recreate the data at resolution level i by retrieving stages 0 through i� 1 from the archive and

then decompressing and recombining them. We will describe the retrieval procedure in more

detail shortly.

The iterative compression algorithm shown in the �gure actually represents a general class of

compression procedures. During each iteration, data is compressed using some lossy compression

technique, and then decompressed. The di�erence between the decompressed data and the

original is computed. This di�erence, or error, becomes the data that is compressed during the

next iteration.

The iterative compression procedure for computing three stages of compressed data is il-

lustrated in more detail in Figure 5. As illustrated, a lossy compression function f

i

is used to

produce the stage-i data. Since the compression function is lossy, the decompressed data will

not match the original data exactly. The di�erence between the original data D

0

and the decom-

(STAGE-0)
Decompressed
 Data

Compressed
 Data

 Compression
 Function

-

Decompression
 Function

 Difference
(Error) Data

Difference

 Original
 Data

Decompressed
 Data

Compressed
 Data

 Compression
 Function

-

Decompression
 Function

 Difference
(Error) Data

Difference

(STAGE-1)

(STAGE-2)

f0

D0

 ()f0 D0 f’ 0

 (())f’ 1f1 D1

 = D1 D0 -

 (())f’ 0f0 D0

 ()f1 D1f1 f’ 1

 (())f’ 0f0 D0

 = D2 D1 -

 (())f’ 1f1 D1

Figure 5: Iterative Compresson Procedure - Three Stages

pressed data f

0

i

(f

i

(D

i

)) is the error data, which is used as the input to the next decompression

stage. In the �gure, the shaded boxes represent the compressed data stages which are actually

stored in MR-CDF.

The example in Figure 5 may be somewhat misleading since it suggests that the compressed

data stages together occupy more space than does the original, full-resolution data set. In

practice, this need not be the case. For more realistic compression techniques, such as those

described in [TiMa90, Ti89], the stages taken together are about as voluminous as the original

data. The compressed stages can be thought of as an alternative representation of the original

data which makes multi-resolution retrieval more convenient.

5 Retrieving Data from MR-CDF

When an application requests data from MR-CDF, it speci�es a desired resolution level. If the

iterative compression procedure produced R stages of compressed data, the data will be available

at R resolutions. The highest resolution level always corresponds to the original, full resolution

of the data.

MR-CDF supplies the data at the speci�ed resolution by retrieving one or more of the

compressed data stages from the archive. To retrieve data a resolution i, stages 0 through i

are retrieved. The retrieved stages are then decompressed and combined to produce the desired

data.

STAGE-0

Compressed
 Data Decompression

 Function Decompressed
 Data

Merge
 Buffer

+

STAGE-1

Compressed
 Data Decompression

 Function Decompressed
 Data

+

STAGE-2

Compressed
 Data Decompression

 Function Decompressed
 Data

+

 To
Application

Figure 6: Decompression Procedure - Three Stages

Figure 6 illustrates how MR-CDF would handle a request to retrieve the data compressed

as illustrated in Figure 5 at resolution level two. (In this case, resolution level two corresponds

to the original, full-resolution data.) Since resolution level two is requested, MR-CDF retrieves

the stage-0, stage-1, and stage-2 compressed data. The �rst two stages are decompressed, and

the resulting data is additively merged into a single bu�er. In this case, the bu�er will contain

an exact recreation of the original data D

0

.

If a lower resolution level is speci�ed, MR-CDF need only retrieve and decompress some of the

stages. For example, for resolution level 0, only the stage-0 data is retrieved and decompressed.

5.1 Decompression Functions

MR-CDF's retrieval procedure requires that a set of decompression functions be available. Since

an arbitrary compression function can be used to produce the stages, MR-CDF must be informed

of the proper decompression function to apply at the time of retrieval. When an application

stores compressed data in MR-CDF, it is required to register an appropriate decompression

function with the library, is was illustrated in Figure 4.

A decompression function is an arbitrary procedure which accepts a set of parameters sup-

plied by MR-CDF. These parameters include pointers to the source bu�er holding the com-

pressed data and a target bu�er into which the decompressed data is to be placed. Additional

information, such as the sizes of the bu�ers and their data types is also provided.

Each time a new multi-resolution variable is de�ned in MR-CDF, the names of the decom-

pression functions to be used for each compressed data stage must also be supplied. Every

decompression function is registered under a particular name. New variables that use the same

decompression functions as existing variables may refer to those functions by name.

A decompression function de�nes a mapping from compressed data to decompressed data.

In many cases, it is most convenient to implement the function as a generic piece of code, plus

some additional data. For example, vector-quantized data can be decompressed by a simple

function which looks-up each code word in a codebook. Changing the codebook changes the

decompression function that is being implemented, but the generic code itself need not be

modi�ed.

Since this is a common occurrence, MR-CDF allows auxiliary data to be stored in addition

to the compressed data at each stage. At decompression time, both the compressed data and

the auxiliary data are supplied to the decompression function. The advantage of auxiliary data

is that common, generic decompression functions need only be registered once with MR-CDF.

6 Partial Retrieval

As was illustrated in Figure 2, CDF allows applications to select a portion of the data space,

and to retrieve only that part of a variable that lies in the selected region. MR-CDF extends

this capability to multi-resolution variables as well.

For single-resolution variables, selections over small regions require less data to be retrieved

than selections over larger ones. Ideally, this property should apply to multi-resolution variables

as well. However, in some cases it is necessary for MR-CDF to recreate an entire variable at the

speci�ed resolution even if only a small region was selected. The selection and decompression

operations do not always commute.

As we have already described, a multi-resolution variable appears (to an application) to be a

collection of d-dimensional records. Each stored stage of a multi-resolution variable can also be

thought of as a collection of d-dimensional records, although the sizes of the dimensions for each

stage may di�er. In the following discussion, we will let (n

1

; n

2

; : : : ; n

d

) represent the dimension

sizes of the variable, and (n

i1

; n

i2

; : : : ; n

id

) represent the dimension sizes for the ith stored stage.

Also, we will de�ne

c

ij

�

n

j

n

ij

as the compression factor of the ith stage along the jth dimension.

Consider the value (in some record) of a multi-dimensional variable at a particular location

(x

1

; x

2

; : : : ; x

d

) in the d-dimensional space. As we have seen, MR-CDF recreates such values by

Data Space with
Selected Region

Compressed Stage
showing Retrieved
Region

Decompressed Retrieved
Data showing Trimmed
Region

Selected Region

Retrieved Region

X

Y

X

Y

Y

X

Decompressed
Retrieved
Data

Trimmed Data

Figure 7: Regular Decompression Example

retrieving, decompressing, and combining the stored stages. We call a decompression function

regular if the variable's value at (x

1

; x

2

; : : : ; x

d

) can be determined using only the stored values

at location (x

1

=c

i1

; x

2

=c

i2

; : : : ; x

d

=c

id

) of each stage i.

MR-CDF prefers decompression functions that are regular. When the decompression func-

tions for all of a variable's stages are regular, MR-CDF may be able to produce the selected

data by retrieving only portions of each compressed stage. In other words, MR-CDF is free to

perform selection on the compressed stages before decompression.

Figure 7 illustrates regular decompression of one stage of a two-dimensional variable. As

the �gure illustrates, MR-CDF may need to retrieve only part of the stage to satisfy a query.

MR-CDF determines which part of a stage to retrieve by scaling the request according to the

compression factors in each dimension. (In the �gure, the compression ratios are 3:1 and 4:1 in

the X and Y dimensions, respectively.) The �gure also shows that the actual volume of data

that results from the decompression process may be greater than what the application selected.

(This depends on the speci�c request and the compression factors of the stage data.) MR-CDF

incorporates a trimming function into its merge procedure to discard any decompressed data

that was not requested.

The simple averaging compression technique used in our earlier example (Figure 3) is a

regular decompression technique. Many other more realistic and e�ective techniques are also

regular. However, many others are not. Examples of non-regular techniques include the multi-

resolution vector quantization described in [MaRe91] and JPEG-like techniques [Wa91] in which

the input data is transformed. In these cases, MR-CDF must decompress entire stages regardless

of the size of the selection. The trimming function is then responsible for selecting from the

recreated data.

MR-CDF assumes that all decompression functions are regular. However, non-regular de-

compression is easily accommodated by treating it as a degenerate case of regular compression.

Speci�cally, non-regular decompression can be accommodated by de�ning each compressed stage

to have size one in each dimension. This will force MR-CDF to retrieve the entire stage, re-

gardless of the size of the selection. De�ning a stage in this way does not restrict in any way

the actual volume of compressed data that can be stored in the stage. Although each stage

record will consist of a single \value", the value may be of a composite type, such as an array,

of arbitrary size.

7 Implementation

To an application, MR-CDF provides a superset of the services provided by CDF. MR-CDF is

also implemented using CDF. All data storage and retrieval is performed by CDF. MR-CDF acts

as a coordinator between a group of CDF archives and the application-speci�ed decompression

procedures.

Each MR-CDF archive is implemented as a set of CDF archives. Speci�cally, a MR-CDF

archive is implemented by a single base CDF plus a set of stage CDFs for storing the compressed

data stages. There is a stage CDF for each stage of every multi-resolution variable de�ned in

the archive. This is illustrated (for an archive with a single multi-resolution variable) in Figure

8.

An MR-CDF archive may contain a mix of single-resolution and multi-resolution variables.

Single-resolution variables are implemented directly in the base CDF. Requests to store and

retrieve such variables are translated into appropriate CDF calls on the base CDF. In addition,

the base CDF maintains global information about the MR-CDF archive such as the number

of de�ned variables and their names. It also maintains general information about the multi-

resolution variables in the archive.

When MR-CDF receives a request to retrieve a multi-resolution variable, the following steps

occur. MR-CDF �rst retrieves general information about the variable (such as the number of

stages that are available and their sizes) from the base CDF. Using this information, MR-CDF

then translates its request to a series of retrieval requests on the stage CDF's.

As data is retrieved from each stage, it is placed in a holding bu�er and then passed through

Decompression

Stage-0
 CDF

Stage-1
 CDF

Stage-L
 CDF

 Base
 CDF

ApplicationBuffer

MR-CDF

Buffer

Request for DataData

BufferBuffer

Trim &
Merge

Figure 8: Implementing MR-CDF with CDF

the appropriate decompression function. (Auxiliary decompression information is stored as at-

tributes of the stage CDFs and is retrieved using the attribute/value manipulation facility pro-

vided by the CDF library.) The decompressed data is then trimmed and merged with data from

the other stages in the merge bu�er. To avoid unnecessary copying of data, the decompressed

and trimmed stages are merged directly into the application's bu�er.

MR-CDF runs on UNIX systems for which CDF is supported. Currently, only the C language

interface is available. Since UNIX does not provide a run-time linking facility, it is not possible

to de�ne new decompression functions to the MR-CDF library without recompiling it. (New

multi-resolution variables using existing decompression functions can be added at any time.)

However, the procedure for adding new decompression functions is very simple.

8 Conclusion

MR-CDF provides an abstract interface to multi-resolution scienti�c data. Its program interface

allows applications to de�ne, store, select, and retrieve data. MR-CDF can make lower resolution

data available quickly, allowing applications to trade o� resolution for retrieval time.

MR-CDF is implemented using NASA's CDF (Common Data Format) library and runs on

any UNIX system supported by CDF. Existing CDF applications can use MR-CDF with minimal

modi�cations.

MR-CDF stores multi-resolution data as a series of compressed data stages which can be

decompressed and combined to produce the data at di�erent resolutions. Retrieval of compressed

data introduces a tradeo� between I/O costs and processing costs. Compression reduces the

volume of stored data, and therefore the I/O cost for its retrieval. However, the decompression

and recombination of the data introduces processing overhead. Technological trends suggest

such tradeo�s will become more bene�cial with time. The performance of processors continues

to improve rapidly, while access times for I/O devices have changed little.

Since CDF utilizes the UNIX �le system, distributed operation of the MR-CDF library is

possible among machines with access to a common �le system, such as NFS. We are currently

planning a distributed version of MR-CDF for systems which do not share �les.

Acknowledgements

Thanks to M. Manohar for several helpful discussions, and for providing test data for MR-CDF.

References

[MaRe91] Markas, A., and J. Reif, \Image Compression Methods With Distortion Controlled

Capabilities", Proc. IEEE Data Compression Conference, April, 1991.

[RoCa90] Roelofs, L. H., and W. J. Campbell, \Using Expert Systems to Implement a Semantic

DataModel of a Large Mass Store System", Telematics and Informatics, 7, 3/4, 1990,

pp. 361-377.

[ShWa88] Short, N., Jr., and S. L. Wattawa, \The Second Generation Intelligent User Interface

for the Crustal Dynamics Data Information System", Telematics and Informatics,

5, 3, 1988, pp. 253-268.

[Tr90] Treinish, L., \The Role of Data Management in Discipline-Independent Data Visu-

alization," SPIE/SPSE Symposium on Electronic Imaging Science and Technology,

February, 1990.

[TrGo90] Treinish, L., and M. Gough, \A Software Package for the Data-Independent Man-

agement of Multidimensional Data,", Eos, 68, 28, July, 1987, pp. 633-635.

[TiMa90] Tilton, J. C., and M. Manohar, \Hierarchical Data Compression: Integrated Browse,

Moderate Loss, and Lossless Levels of Data Compression," Proc. International Geo-

science and Remote Sensing Symposium, May, 1990, pp. 1655-1658.

[Ti89] Tilton, J. C., \Image Segmentation by Iterative Parallel Region Growing and Split-

ting," Proc. International Geoscience and Remote Sensing Symposium, May, 1989,

pp. 2420-2423.

[Wa91] Wallace, G. K., \The JPEG Still Picture Compression Standard," Communications

of the ACM, 34, 4, April, 1991, pp. 30-44.

