
Eos, Vol. 68, No. 28, July 14, 1987

A Software Package for
the Data-Independent
Management of
Multidimensional Data
P A G E S 6 3 3 - 6 3 5

Lloyd A. Treinish and
Michael L. Gough
National Space Science Data Center,
NASA/Goddard Space Flight Center,
Greenbelt, Md.

Introduction
T h e National Space Science Data Center

(NSSDC) o f the National Aeronautics and
Space Administration (NASA) Goddard
Space Flight Center (GSFC) provides access
to data from and information about a pletho­
ra of scientific experiments from a variety o f
disciplines. T o help fulfill this mission,
NSSDC has developed a software package
that supports a self-describing data structure.
This structure, called the Common Data For­
mat (CDF), provides true data independence
for applications software that has been devel­
oped at NSSDC. Scientific software systems at
NSSDC use this construct so that they do not
need specific knowledge o f the data with
which they are working. This permits users
of such systems to apply the same functions
to different sets o f data. This data-indepen­
dent concept was first introduced at NASA in
support o f atmospheric and climatic research
via the Pilot Climate Data System (PCDS), a
scientific information system and analysis sys­
tem developed at NSSDC [Treinish, 1984;
Reph et al, 1986]. T h e users o f such data-in­
dependent NSSDC systems as the PCDS rely
on their own knowledge o f different sets o f
data to interpret the results, a critical feature
for the multidisciplinary studies inherent in
the earth and space sciences. Such CDF-based
software can use the information available
through the CDF software package to inform
a user about contents, history, and structure
of the data that are supported in a given
CDF.

Background
T h e CDF was originally conceived, de­

signed, and implemented in 1982 as a means

0 0 9 6 - 3 9 4 1 / 8 7 / 6 8 2 8 - 6 3 3 $ 1.00
Copyr igh t 1987 by the Amer i can Geophysical Union

of transferring data in many different for­
mats to a uniform format for use in generic
data display software via computer graphics
in the PCDS [Treinish, 1984]. This initial im­
plementation represented a prototype for a
data-independent storage structure, in which
only some o f the CDF concepts described in
the following sections were made available.

T h e success o f the CDF in providing a
mechanism for the uniform treatment o f a
wide assortment o f disparate climate data sets
resulted in its being hailed as one o f the out­
standing features o f the PCDS. This common
format for the storage and transfer o f climate
data made it easy to develop generic graphi­
cal and analytical tools that were based upon
the CDF but were readily applicable to a col­
lection o f data accumulated from a broad
spectrum o f climate-related experiments.
However, as the functional capabilities o f the
PCDS expanded in scope after its initial im­
plementation, the original prototype CDF de­
sign was pushed beyond its limits in order to
accommodate greater data processing re­
quirements. Hence the need arose for the
generalization o f the CDF concept (outlined
herein) to meet the expanding PCDS require­
ments. T h e implementation o f the general­
ized CDF was completed in 1986.

T h e success o f the CDF approach in meet­
ing the data management requirements o f
the PCDS came to the attention o f commit­
tees that were responsible for planning other
NSSDC systems that needed to solve similar
problems (i.e., the uniform treatment o f data
collected from a diverse range o f sources).
Chief among these systems is the Pilot Land
Data System (PLDS), which has data manage­
ment requirements analogous to the PCDS
but must also handle large volumes o f satel­
lite image data [Campbell et al, 1986]. Fur­
thermore, the CDF is now the standard vehi­
cle for the collections of data that are used in
the Coordinated Data Analysis Workshops
(CDAW) in support o f solar-terrestrial phys­
ics applications [Vette et al, 1982; Manka,
1986]. CDAW has some data management re­
quirements similar to the PCDS but is more
oriented toward detailed data analysis. T h e

use o f such a common format has made it
possible to share data between systems, to
combine diverse data sets, and to transport
software modules from one system to anoth­
er.

Description
T h e CDF, through its software package,

provides to the applications programer a
mechanism for uniformly viewing data o f in­
terest via a data structure that is oriented to
the user o f the data (i.e., a scientist). It is a
conceptually simple framework for the cre­
ation o f generic applications (e.g., graphical
displays, statistical analysis) and transparent
(i.e., usable without the user being aware o f
the intervening mechanisms), discipline-ori­
ented or user-chosen views o f data. It is a
uniform structure for the distribution o f self-
descriptive data, which can be supported by
analysis software. This mechanism for the
flexible organization o f interdisciplinary data
into generic multidimensional structures con­
sistent with potential scientific interpretation
provides a simple abstract conceptual envi­
ronment for the scientific applications pro­
gramer who works with data, but it also en­
courages the decoupling o f data analysis con­
siderations from those of data storage. T h e
developer o f CDF-based applications can easi­
ly create software that permits a user to slice
data across multidimensional subspaces. How­
ever, the CDF is not a standard format that
allows programers to "grovel" in the bits. Nei­
ther is it a mechanism for programers to
write messy Fortran formats, and it is not a
structure for storing and translating obscure­
ly packed data formats between strange oper­
ating systems. Finally, it is not a format with
which programers have to consider low-level
input/output tasks.

T h e hallmark o f the Common Data Format
concept is data set independence. This inde­
pendence is achieved by means o f an internal
format, containing its own data dictionary,
which is, in effect, a data base system. In oth­
er words, a CDF defines its own format. This
self-defining property makes it possible for
the CDF to be used for data from a wide va­
riety o f disciplines.

A CDF is therefore composed of two class­
es o f information: the scientific data them­
selves and the information defining that data
and describing its organization within the
CDF structure. T h e descriptive information
(or metadata), as well as the data themselves,
can be accessed by means of standard soft­
ware routines. These CDF interface routines
give programers an abstract view of the con­
tents o f a CDF while relieving them from the
burden of physically packing data into files or
translating the metadata to ascertain file con­
tents. As such, these routines are analogous
to the access routines provided by a typical
data base management package.

T h e concept o f using a data dictionary to
describe the contents o f a data file is not new
for the purpose o f achieving a data-indepen­
dent transportable standard, especially in the
geophysics community [Thomas and Guertin,
1981]. However, the CDF differs from those
earlier formats by being oriented toward the
researcher's (rather than the programer's)
view of the data. T h e CDF interface routines
not only relieve the scientist/programer o f
low-level burdensome tasks but in fact estab­
lish a concept o f data organization consistent
with the scientific interpretation o f the data.

Cover. In 1979, Columbia Glacier (in
Alaska) was terminating in nearly the
same position as it had since at least 1899,
when it was mapped by G. K. Gilbert. T h e
embayments in the 1979 terminus are pre­
cursors to a drastic retreat that began in
the early 1980s. By 1986 the glacier had
receded about 2 km from the terminal
moraine that is clearly indicated by the
sharp discontinuity in iceberg density. Wa­
ter depth over the terminal moraine is no
more than 22 m, water depth near the
1986 terminus is about 300 m, and water

depth in Columbia Bay (toward the viewer
in this photo) is about 200 m. Retreat o f
about 30 km is expected over the next
several decades.

T h e retreat o f Columbia Glacier was
just one o f the many glacier-related topics
discussed at the May 1986 AGU Chapman
Conference on Fast Glacier Flow. For a
report o f that meeting, see page 638
(Photograph 7 9 L 3 - 0 2 8 , August 22, 1979,
taken by Austin Post, U.S. Geological Sur­
vey, Tacoma, Wash.)

T h e most important difference between the
CDF and conventional data format standards,
such as the F L A T D B M S [Smith and Clauer,
1984, 1986] and its predecessor, Block Data
Set [McPherron, 1976], is in the nature o f the
data descriptions maintained within the CDF
and of its supporting software (see the imple­
mentation section below). It should be noted
that although there are similarities between
CDF and earlier efforts, such as F L A T D B M S ,
CDF was developed independently o f them.
Each o f these data descriptions in the CDF
not only defines the name o f each data vari­
able and its units (e.g., T E M P E R A T U R E
[DEGREES KELVIN]) , but also specifies the
organization o f the individual values o f the
variable into a construct consistent with the
interpreted dimensionality o f the data ensem­
ble. Although F L A T D B M S , for example,
does maintain some internal data descriptions
similar to CDF, such metadata does not in­
clude the definition o f multidimensional (i.e.,
nonscalar) constructs. CDF provides the abili­
ty to define such multidimensional structures,
which are a mechanism for viewing a data en­
semble that constitutes some conceptual enti­
ty o f interest to a user (e.g., an atmospheric
temperature profile, that is, a collection o f
temperatures at various levels in the atmo­
sphere). Block Data Set, for example, sup­
ports multidimensional structures, but unlike
CDF, it is limited only to the sequential access
o f multiple variables, which are assumed to
be sampled at equidistant intervals [McPher­
ron, 1976].

T h e simplest such data construct would
represent one dimension o f data, a collection
or vector o f numbers. T h e next level would
imply two dimensions o f data as two parallel
vectors, such as an atmospheric profile with a
vector o f values and a vector o f levels, each o f
which corresponds to a value. A three-dimen­
sional construct implies a matrix o f values
and a matrix o f auxiliary data, such as a map
of values at specific latitude-longitude loca­
tions. Another example would be the combi­
nation o f two two-dimensional constructs: a
time history o f values and a profile o f values
to yield a profile history; for example, a col­
lection o f information as a function o f time
and atmospheric height.

Table 1 shows this progression o f data con­
structs, provides some climatological exam­
ples, and illustrates ways o f viewing such enti­
ties graphically. It should be emphasized that
although the examples are primarily from the
atmospheric sciences, the techniques apply to
regularly structured data from any discipline.

Conceptual Organization
As Table 1 suggests, the number o f inter­

esting multidimensional data constructs is
quite large, even when the field o f interest is
restricted to climatology. Moreover, the CDF
must be capable of storing data ensembles
from a number o f other disciplines, including
(at least) earth science, solar-terrestrial phys­
ics, oceanography, planetary astronomy, and
astrophysics. Clearly, it would not be practical
to design such data constructs into the CDF
individually on a one-by-one basis. Instead,
the CDF incorporates a generic data handling
mechanism that applies universally to a class
o f multidimensional data constructs.

T h e goal o f handling such a diverse collec­
tion of data objects creates the potential for
an individual CDF to become an assortment

Eos, Vol. 68, No. 28, July 14, 1987

T A B L E 1. Multidimensional Data Constructs

Dimensions
o f Data

Supported Data Type
Graphic

Examples

1 flat data

2 time histories, atmospheric profiles,
zonal means, particle spectra

3 grids/images, zonal profiles, zonal
histories, profile histories, spectra
histories

4 grid/image histories, gridded profiles,
zonal profile histories

5 gridded profile histories

histogram

X-Y plot

contour plot, 3-D surface,
color image, X-Y-Z plot

animated contours, animated
3-D surface, 3-D surface
with color

animated 3-D surface with
color

o f entities o f various dimensionalities and
sizes. T h e correlation o f objects o f different
dimensionalities within a single CDF could be
ill-defined, relying on higher-level data-de­
pendent software to resolve potential ambigu­
ities. This problem is solved by specifying
that a CDF be built as a multitude o f similar
structures. Each CDF is (conceptually) com­
posed o f repetitions o f a single n-dimensional
grid structure, where the number o f dimen­
sions and size o f each dimension in such a
structure is arbitrary but is defined by the
programer at the time of initial CDF creation.
T h e overall CDF data ensemble is generated
by propagation o f this grid structure from
variable to variable and from record to re­
cord, with each occurrence o f the grid carry­
ing its own collection o f data values. Data val­
ues are correlated between different occur­
rences o f the grid by means o f grid indices:
for example, a data value in one occurrence
of the grid is correlated to that specific data
value in another occurrence o f the grid that
has identical indices.

T h e dimensionality o f this basic grid struc­
ture, the number o f variables, and the num­
ber o f records can all be specified indepen­
dently. In other words, the CDF is construct­
ed from fundamental building blocks, whose
size imposes no restriction on the number
used or on their arrangement. As a conse­
quence, there is no a priori correlation be­
tween the dimensionality o f the building
block (basic grid structure) and the dimen­
sionality o f the data ensemble as a whole. T o
avoid confusion, the dimensionality o f the ba­
sic grid structure will be referred to as the
CDF rank. T h e CDF rank then is the dimen­
sionality o f its basic building block or the
number o f dimensions in the basic grid struc­
ture.

Figure 1 shows the concept o f CDF data
organization, a uniform multidimensional
block structure for a CDF o f rank two. T h e
simplest or degenerate case o f a CDF basic
grid structure is one of rank zero; it contains
only a single data value, or scalar. This can be
envisioned by substituting a single data value
for each two-dimensional grid in Figure 1.
Such a CDF is virtually identical to the
F L A T D B M S structure [Smith and Clauer,
1984]. It should be noted that although the
dimensionality o f each variable in a CDF may
not be the same, a basic grid structure is con­
structed to encompass all o f the variables,
and its rank is assigned accordingly. Despite

the sequential layout o f the data in Figure 1,
each element o f each grid and o f each record
can be accessed in any order.

T h e CDF conceptually supports an organi­
zational hierarchy that, at the basic level, clas­
sifies units o f data into elements or variables,
each o f which corresponds to a single observ­
able parameter. These variables can be de­
scribed by attributes. A single atom o f one o f
these variables, or a single observed value or
datum, can be visualized at the grid points o f
the n-dimensional basic grid that is invariant
within a CDF. In Figure 1, each basic grid
block contains 25 atoms, and hence there are
25 values for each variable. Basic grids for a
group of variables are collected into a record
(i.e., one block for each variable). A collection
o f records constitute a data ensemble. A vari­
able is referenced by its mnemonic, which
points to the corresponding metadata (e.g.,
attributes) in a CDF.

T h e CDF is composed o f more than just a
data ensemble. There is a data dictionary and
attribute table that contain the various afore­
mentioned characteristics and ancillary infor­
mation that define the data ensemble com­
pletely. T h e data dictionary specifies whether
or not each variable varies with respect to
records (record variance) or to the individual
dimensions o f the basic grid structure (di­
mensional variance). T h e attribute table sup-

Record
Number

Fig. 1. Conceptual view o f a CDF data
ensemble with rank = 2.

 23249250, 1987, 28, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/E

O
068i028p00633 by N

asa G
oddard, W

iley O
nline L

ibrary on [06/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Eos, Vol. 68, No. 28, July 14, 1987

ports specific information about variables,
such as name, mnemonic, scientific units,
type (e.g., real*4, integer*2 in the Fortran
sense), range, resolution, and display format,
as well as global information about the entire
ensemble. This global information might in­
clude (for example) statistics, which could in­
clude minimums and maximums, and text,
which can be used to support documentation.
T o help illustrate these concepts, a simple ex­
ample is presented in the following section.

An Example CDF Structure
Table 2 contains a simple data ensemble

that can be used to illustrate the various
aforementioned CDF concepts. This ensem­
ble contains a collection o f temperature mea­
surements at different times and locations.
T h e accompanying box (Description o f One
Variable (Attributes)) shows an example o f
the type o f general descriptions or attributes
that CDF supports in its data dictionary for
data elements or variables. I f one examines
the data ensemble in detail, it becomes appar­
ent that it contains more than a simple flat
structure, despite its given organization. For
example, time is organized into blocks o f four
identical values. Latitude and longitude are
each cyclic, with two fixed values (+ 30, + 4 0)
and (- 1 6 5 , - 1 5 0) , respectively. Hence the
temperature values are organized into a 2 x
2 grid for each observation, where longitude
and latitude represent the dimensions o f that
grid. CDF supports this type o f data structure
implicitly. T h e 2 x 2 temperature grid actu­
ally implies a uniform 2 x 2 virtual block
structure (i.e., a CDF o f rank 2) for the entire
CDF. In addition, the CDF software can take
advantage o f information about such data
structures to conserve storage space. This in­
ternal elimination o f redundancy is illustrated
in Figure 2 and the accompanying Table 3.
T h e CDF specifications presented in Table 3
show the information that the programer
must provide in order to eliminate such re­
dundant data storage. In this example, lati­
tude and longitude are invariant with respect
to record number and hence are stored only
once. T h e uniform block structure implies
that the values o f the elements that are in­
variant with record number (i.e., latitude and
longitude) appear to be duplicated for succes­
sive records and that the values o f the ele­
ments that are invariant with respect to a ba­
sic grid dimension (i.e., time) appear to be
duplicated across that dimension. CDF por­
trays to the programer a uniform block struc­
ture in which equal random access to all ele­
ments is provided, while any redundant stor­
age inherent in that structure is eliminated
for its physical storage. Although this simple
example shows a time series o f data organ­
ized into a single grid structure, CDF can just

Record Number

Sample CDF Data Ensemble Structure

Physical Structure

Variables

TIT© (1) Longitude (2) Latitude (3) Temperature (4)

0 1 0 0 - 1 6 5 - 1 5 0 + 4 0

+ 3 0

1 9 0

1 9 6 •
•

195

2 0 0

194

2 0 3

Virtual (Conceptual) Structure (Programer's View)

Variables

Record Number Tme(1) Longitude (2) Latitude(3) Temperature (4)

1 1 0 0 * » 1 0 0

1 0 0 J 1100

- 1 6 5 n j-150

. 1 6 5 J 1-150

+ 4 0 I J+40
+ 3 0 1 1+30

1 9 0 « * 195

1 9 6 1 1200

2 1 3 0 * 1130

1 3 0 1 1130

- 1 6 5 * 1-150

. 1 6 5 J 1-150

+ 4 0 n j+40
+ 3 0 1 1+30

1 9 7 w * 1 9 4

1 9 5 1 1203

Fig. 2. Sample CDF data ensemble structure.

_

as easily handle non—time series data organ­
ized into complex grids.

Implementation
T h e CDF isolates the details o f the struc­

ture o f a data set from a user o f such data in
any applications software. Therefore the pro­
gramer o f such applications only needs to
know about the collection o f CDF operations.
These operations, which are maintained in
the CDF interface routine library, permit a
programer to create, access, fill, extract, and
query the data and variable attributes in a
CDF. T h e programer does not need to know
the details o f the CDF storage nor the under­
lying software structure because the CDF is
implemented as a data abstraction [Shaw,
1984; Berlins et al, 1986]. This isolation per­
mits enhancements to the CDF implementa­
tion as new software and hardware technolo­
gy permit, without requiring changes to ap­
plications software. T h e user simply perceives
improved performance or functionality (in
other words, the CDF structures and imple­
mentation are transparent to the user). In ad­
dition, the CDF concept is extensible in the
programer's perspective by the addition o f

T A B L E 2. Example CDF Structure: Data Ensemble

Variables

Record Number T ime (1) Longitude (2) Latitude (3) Temperature (4)

1 0100 - 1 5 0 . + 30. 200.
2 0100 - 1 5 0 . + 4 0 . 195.
3 0100 - 1 6 5 . + 30. 196.
4 0100 - 1 6 5 . + 4 0 . 190.
5 0130 - 1 5 0 . + 30. 203 .
6 0130 - 1 5 0 . + 4 0 . 194.
7 0130 - 1 6 5 . + 30. 195.
8 0130 - 1 6 5 . + 4 0 . 197.

new operations. Hence the interface routine
library or the CDF software package is a tool­
box o f programing primitives for managing
multidimensional data ensembles; it provides
a simple abstract view for random access o f
arbitrary blocks o f data. Any analysis or other
applications capabilities must be built into
higher-level software that employs CDF. T h e
programer that utilizes the CDF data abstrac­
tion views the CDF interface routine library
as consisting o f 13 operations that address
the basic features o f the CDF: dictionary,
structure, data ensemble, summary statistics,
and documentation, as well as general file
management. T h e library represents the For­
tran language bindings for these operations
as implemented for Digital Equipment Cor­
poration (DEC) VAX/VMS computer systems.
These abstract routines are designed to make
it easy for a programer to utilize data in
terms o f CDF, independently o f the complex­
ity o f the data. Optimization for high-per­
formance (minimal use o f memory, central
processing unit resources, and input/output
operations) in the VAX/VMS environment
has been incorporated within the CDF soft­
ware to eliminate the overhead that is typical­
ly present in data management systems that
use simple sequential files (e.g., Block Data
Set), but it is also isolated in a way which sim­
plifies future porting to other operating sys­
tems. For example, the physical structure o f a
CDF on VAX/VMS systems consists o f n + 2
binary random access files, where n is the
number o f variables in the CDF. T h e other
two files contain the data dictionary with its
related statistics and documentation (i.e., me­
tadata) and the definition o f the data struc­
ture, respectively. However, these files are
transparent to the user and appear integrated
as a single CDF via the CDF software. In ad­
dition, the CDF software employs a high­
speed caching algorithm similar to those that

 23249250, 1987, 28, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/E

O
068i028p00633 by N

asa G
oddard, W

iley O
nline L

ibrary on [06/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Eos, Vol. 68, No. 28, July 14, 1987

T A B L E 3. Sample CDF Data Ensemble Specifications

Variables
Attribute

T ime (1) Longitude (2) Latitude (3) Temperature (4)

First Dimension Variance (->) False True False True
Second Dimension Variance (|) False False True True
Record Variance True False False True
Data Type Integer * 4 Real * 4 Real * 4 Real * 4

Description o f One Variable (Attributes)

Variable mnemonic
Variable name
Variable units
Resolution
Display format
Valid range

T E M P
temperature

degrees Kelvin
0.6

F7.3
170. to 290 .

typical virtual memory operating systems
(e.g., VAX/VMS) utilize to shuttle data quick­
ly in and out o f memory. This ensures that
blocks o f data that are randomly requested by
a programer in one or more CDFs are rapid­
ly available on an as-needed basis.

T h e operations o f the library include rou­
tines to create, open, close, delete, and in­
quire about a CDF; to create and inquire
about CDF variables; to enter or extract data
from a variable; to create and inquire about
CDF attributes; and to enter or extract infor­
mation from an attribute. It should be noted
that once all o f the variables have been speci­
fied through a "create CDF variable" routine,
the programer does not need to keep track o f
dimension and record variances: T h e CDF
package will manage this information. Al­
though a programer is free to create applica­
tions-specific attributes, there are conventions
for various CDF attributes that are employed
in CDF-based applications at NSSDC (e.g.,
variable name for labeling a plot axis [Gough,
1987]).

Status and Applications
As stated earlier, a subset o f the CDF was

first implemented in 1982 as a means o f pro­
viding data-independent access, display, and
manipulation o f several types o f multidimen­
sional data within the prototype version o f
the PCDS [Treinish, 1984]. This implementa­
tion provided only some o f the features o f
the complete CDF as a proof o f concept. Var­
ious software packages were built as CDF ap­
plications to permit the PCDS users to easily
manipulate and display (through computer
graphics) data o f interest. T h e full implemen­
tation of the CDF is now complete and has
been undergoing alpha testing at NSSDC.
T h e CDF software is also undergoing beta
testing at several other sites that support data
from a number o f different disciplines. (Al­
pha testing o f software implies rigorous utili­
zation in new applications within the software
developers' organization, while beta testing
involves evaluation by volunteers outside o f
the original organization.) Within NSSDC,
many applications are being built upon this
structure, including redesigned operational
data access, data manipulation and graphics
capabilities within the PCDS, support o f data
analysis, management and graphics for
CDAW, and graphics capabilities for the
PLDS. T o support these various analysis and
display applications, a generic layer called the
Virtual Data Table (VDT) has been devel­

oped on top o f CDF. T h e V D T provides a
"spreadsheet"-type window on any arbitrary
two-dimensional subset o f a multidimensional
structure within a CDF [Gough, 1986].

Once the CDF software and generic CDF
applications were established at NSSDC, these
tools were then used to support a number o f
scientific research activities in many different
disciplines. Dozens o f different data sets, in a
variety o f mutually incompatible formats,
have been very easily and quickly converted
to CDFs via programs that use the CDF soft­
ware. Although new data sets are being con­
verted every day through such custom pro­
grams, other generic software is being devel­
oped to convert one or more classes o f
different formats or data base representations
o f data (which may support many different
data sets) to CDF. Once any data, whether
they are simple or complex in nature, are
available in CDF, powerful data-independent
applications available at NSSDC in systems
such as the PCDS can be used to work with
such data for data display (e.g., x-y plots, con­
tour plots, histograms, maps, etc.) or for data
analysis (e.g., through the Interactive Data
Language, or IDL) in a generic fashion [Re­
search Systems Inc., 1986]. Before the advent o f
CDF, customized applications typically had to
be developed to work with complex data in
their original format. (Smith and Clauer [1984]
and McPherron [1976] outline notable excep­
tions to this common situation.) Now, robust
CDF-based applications, already available at
NSSDC, can be utilized with such data, once
they are available in CDF.

Conclusion
T h e CDF is an abstraction for the data-in­

dependent storage and management o f mul­
tidimensional data, in which the data ensem­
ble appears to be built from multiple occur­
rences o f a single n-dimensional block that is
consistent with the scientific interpretation o f
the data (i.e., it provides a user's view o f the
data rather than that o f the programer). T h e
values for different variables are correlated
simply by specifying identical record numbers
and basic grid indices. Redundant physical
storage o f data for cyclic variables is eliminat­
ed by the specification o f record and grid di­
mension variances. T h e CDF structure pro­
vides flexibility in application and simplicity
in use. For example, CDF can support data
ranging from simple collections o f scalar
measurements to very large multispectral im­
ages (e.g., from LANDSAT) to complex mul­
tidimensional structures. Hence this flexibility
and simplicity together yield power for the
development o f comprehensive, generic sys­
tems to support data management and correl­
ative data analysis. This power is needed by
the National Space Science Data Center to
help fulfill its goal o f providing the research
community with ready access to easy-to-use,

well-documented data. I f readers are interest­
ed in learning more about CDF, please con­
tact the authors at NSSDC (or NSSDCA-
::Treinish and NSSDCA::MGough on the
Space Physics Analysis Network (SPAN)). Ad­
ditional documentation about CDF and
copies o f the CDF Implementer's Guide
[Gough, 1987], as well as the V A X / V M S im­
plementation o f the CDF Software Package
for beta testing, are available through the
NSSDC Request Office, Code 630.2 , NASA/
Goddard Space Flight Center, Greenbelt, MD
20771 (or N S S D C : : R E Q U E S T on SPAN).

Acknowledgments

T h e research reported in this paper has
been supported mainly by the Office o f Space
Science and Applications (OSSA) o f the Na­
tional Aeronautics and Space Administration.
T h e authors wish to acknowledge several
people from the staff o f NSSDC: Clayton E.
Wilson for contributions to development o f
CDF; Mary G. Reph for the management o f
the software development; and Paul H. Smith
for the initiation and the management o f the
PCDS, under which the early CDF work was
done. In addition, the authors wish to thank
James L. Green, director o f NSSDC, for his
continued support o f CDF and for the con­
cept o f discipline-independent software sys­
tems to support scientific research.

References

Berzins, V., M. Gray, and D. Naumann, Ab­
straction-based software development, Com-
mun. ACM, 29, 402 , 1986.

Campbell, W. J . , P. H. Smith, R. H. Price and
L. H. Roelofs, Advancements in land sci­
ence data management: Pilot Land Data
System, Sci. Total Environ., 56, 31 , 1986.

Gough, M., A generic tool for the generation
and display o f animated sequences, in Pro­
ceedings of the Third Annual Conference of the
TEMPLATE User Network, Megatek Corpo­
ration, San Diego, Calif., 1986.

Gough, M., NSSDC Common Data Format
Implementer's Guide,'Rep. NSSDCISAR
8701, National Space Science Data Center,
NASA Goddard Space Flight Center,
Greenbelt, Md., 1987.

Manka, R. H., CDAW Space Data Analysis
Progresses, Eos Trans. AGU, 67, 1401, 1986.

McPherron, R. L., A self-documenting
source-independent data format for com­
puter processing o f tensor time series, Phys.
Earth Planet. Inter., 12, 103, 1976.

Reph, M. G., L. A. Treinish, C. E. Noll, T . D.
Hunt, and S.-W. Chen, Pilot Climate Data
System Users' Guide, NASA/GSFC Tech.
Memo. 86084 (revised), January 1986.

Research Systems, Inc., The Interactive Data
Language (IDL) Users Guide, Boulder, Colo.,
1986.

Smith, A. Q., and C. R. Clauer, F L A T D B M S :
A flexible, source-independent data man­
agement system for scientific data, STAR
Lab Rep. D106-1984-1, Stanford Univ.,
Stanford, Calif., 1984.

Smith, A. Q., and C. R. Clauer, A versatile
source-independent system for digital data
management, Eos Trans. AGU, 67, 188,
1986.

Shaw, M., Abstraction techniques in modern
programming languages, IEEE Software, 1,
10, 1984.

Thomas, V., and F. E. Guertin, Standardiza­
tion o f computer compatible tape formats

 23249250, 1987, 28, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/E

O
068i028p00633 by N

asa G
oddard, W

iley O
nline L

ibrary on [06/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Eos, Vol. 68, No. 28, July 14, 1987

for remote sensing data, paper presented
at the 1981 I E E E International Geoscience
and Remote Sensing Symposium
(IGARSS'81) , IEEE Digest, 2, 1656, J u n e
1981.

Treinish, L. A., A general scientific informa­
tion system to support the study o f climate-
related data, NASAIGSFC Tech. Memo.
86152, September 1984.

Vette, J . I., D. M. Sawyer, M . J . Teague, and
D. J . Hei, T h e origin and evolution o f the
coordinated data analysis workshop proc­
ess, IMS Source Book, 112, 235, 1982.

Lloyd A. Treinish is a
computer scientist at the
National Space Science
Data Center of NASA
Goddard Space Flight Cen­
ter. He works on the devel­
opment of advanced data
systems for support of sci­
entific applications, as well
as studying space and at­
mospheric phenomena. His " * I '
research interests range from computer graphics,
data storage structures, data representation method­
ologies, computer user interfaces, and data analysis
algorithms to middle atmosphere electrodynamics,

planetary astronomy, and climatology. A 1978
graduate of the Massachusetts Institute of Technol­
ogy, with a S.M. and a S.B. in physics and a S.B.
in earth and planetary sciences, Treinish has been
at NASA since 1979. He is a member of AGU, the
Association for Computing Machinery (ACM),
ACM SIGGRAPH, the Planetary Society, and the
IEEE Computer Society.

Michael L. Gough is a
senior software engineer
with Science Applications
Research Corporation at
the National Space Science
Data Center. He works on
the development of ad­
vanced data systems for
support of scientific appli­
cations. He has designed
both generic software tools w4HMl
that produce animated graphics of scientific data
and advanced data structures for scientific data.
He has developed virtual memory and network
communications software for NASA's Massively
Parallel Processor, as well as real-time satellite
tracking and data ingest software for weather fore­
casting systems in the People's Republic of China
and Argentina. Gough has been with Science Ap­
plications Research Corporation since 1983.

 23249250, 1987, 28, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/E

O
068i028p00633 by N

asa G
oddard, W

iley O
nline L

ibrary on [06/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

