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Introduction 
T h e National Space Science Data Center 

(NSSDC) o f the National Aeronautics and 
Space Administration (NASA) Goddard 
Space Flight Center (GSFC) provides access 
to data from and information about a pletho­
ra of scientific experiments from a variety o f 
disciplines. T o help fulfill this mission, 
NSSDC has developed a software package 
that supports a self-describing data structure. 
This structure, called the Common Data For­
mat (CDF), provides true data independence 
for applications software that has been devel­
oped at NSSDC. Scientific software systems at 
NSSDC use this construct so that they do not 
need specific knowledge o f the data with 
which they are working. This permits users 
of such systems to apply the same functions 
to different sets o f data. This data-indepen­
dent concept was first introduced at NASA in 
support o f atmospheric and climatic research 
via the Pilot Climate Data System (PCDS), a 
scientific information system and analysis sys­
tem developed at NSSDC [Treinish, 1984; 
Reph et al, 1986]. T h e users o f such data-in­
dependent NSSDC systems as the PCDS rely 
on their own knowledge o f different sets o f 
data to interpret the results, a critical feature 
for the multidisciplinary studies inherent in 
the earth and space sciences. Such CDF-based 
software can use the information available 
through the CDF software package to inform 
a user about contents, history, and structure 
of the data that are supported in a given 
CDF. 

Background 
T h e CDF was originally conceived, de­

signed, and implemented in 1982 as a means 
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of transferring data in many different for­
mats to a uniform format for use in generic 
data display software via computer graphics 
in the PCDS [Treinish, 1984]. This initial im­
plementation represented a prototype for a 
data-independent storage structure, in which 
only some o f the CDF concepts described in 
the following sections were made available. 

T h e success o f the CDF in providing a 
mechanism for the uniform treatment o f a 
wide assortment o f disparate climate data sets 
resulted in its being hailed as one o f the out­
standing features o f the PCDS. This common 
format for the storage and transfer o f climate 
data made it easy to develop generic graphi­
cal and analytical tools that were based upon 
the CDF but were readily applicable to a col­
lection o f data accumulated from a broad 
spectrum o f climate-related experiments. 
However, as the functional capabilities o f the 
PCDS expanded in scope after its initial im­
plementation, the original prototype CDF de­
sign was pushed beyond its limits in order to 
accommodate greater data processing re­
quirements. Hence the need arose for the 
generalization o f the CDF concept (outlined 
herein) to meet the expanding PCDS require­
ments. T h e implementation o f the general­
ized CDF was completed in 1986. 

T h e success o f the CDF approach in meet­
ing the data management requirements o f 
the PCDS came to the attention o f commit­
tees that were responsible for planning other 
NSSDC systems that needed to solve similar 
problems (i.e., the uniform treatment o f data 
collected from a diverse range o f sources). 
Chief among these systems is the Pilot Land 
Data System (PLDS), which has data manage­
ment requirements analogous to the PCDS 
but must also handle large volumes o f satel­
lite image data [Campbell et al, 1986]. Fur­
thermore, the CDF is now the standard vehi­
cle for the collections of data that are used in 
the Coordinated Data Analysis Workshops 
(CDAW) in support o f solar-terrestrial phys­
ics applications [Vette et al, 1982; Manka, 
1986]. CDAW has some data management re­
quirements similar to the PCDS but is more 
oriented toward detailed data analysis. T h e 

use o f such a common format has made it 
possible to share data between systems, to 
combine diverse data sets, and to transport 
software modules from one system to anoth­
er. 

Description 
T h e CDF, through its software package, 

provides to the applications programer a 
mechanism for uniformly viewing data o f in­
terest via a data structure that is oriented to 
the user o f the data (i.e., a scientist). It is a 
conceptually simple framework for the cre­
ation o f generic applications (e.g., graphical 
displays, statistical analysis) and transparent 
(i.e., usable without the user being aware o f 
the intervening mechanisms), discipline-ori­
ented or user-chosen views o f data. It is a 
uniform structure for the distribution o f self-
descriptive data, which can be supported by 
analysis software. This mechanism for the 
flexible organization o f interdisciplinary data 
into generic multidimensional structures con­
sistent with potential scientific interpretation 
provides a simple abstract conceptual envi­
ronment for the scientific applications pro­
gramer who works with data, but it also en­
courages the decoupling o f data analysis con­
siderations from those of data storage. T h e 
developer o f CDF-based applications can easi­
ly create software that permits a user to slice 
data across multidimensional subspaces. How­
ever, the CDF is not a standard format that 
allows programers to "grovel" in the bits. Nei­
ther is it a mechanism for programers to 
write messy Fortran formats, and it is not a 
structure for storing and translating obscure­
ly packed data formats between strange oper­
ating systems. Finally, it is not a format with 
which programers have to consider low-level 
input/output tasks. 

T h e hallmark o f the Common Data Format 
concept is data set independence. This inde­
pendence is achieved by means o f an internal 
format, containing its own data dictionary, 
which is, in effect, a data base system. In oth­
er words, a CDF defines its own format. This 
self-defining property makes it possible for 
the CDF to be used for data from a wide va­
riety o f disciplines. 

A CDF is therefore composed of two class­
es o f information: the scientific data them­
selves and the information defining that data 
and describing its organization within the 
CDF structure. T h e descriptive information 
(or metadata), as well as the data themselves, 
can be accessed by means of standard soft­
ware routines. These CDF interface routines 
give programers an abstract view of the con­
tents o f a CDF while relieving them from the 
burden of physically packing data into files or 
translating the metadata to ascertain file con­
tents. As such, these routines are analogous 
to the access routines provided by a typical 
data base management package. 

T h e concept o f using a data dictionary to 
describe the contents o f a data file is not new 
for the purpose o f achieving a data-indepen­
dent transportable standard, especially in the 
geophysics community [Thomas and Guertin, 
1981]. However, the CDF differs from those 
earlier formats by being oriented toward the 
researcher's (rather than the programer's) 
view of the data. T h e CDF interface routines 
not only relieve the scientist/programer o f 
low-level burdensome tasks but in fact estab­
lish a concept o f data organization consistent 
with the scientific interpretation o f the data. 

Cover. In 1979, Columbia Glacier (in 
Alaska) was terminating in nearly the 
same position as it had since at least 1899, 
when it was mapped by G. K. Gilbert. T h e 
embayments in the 1979 terminus are pre­
cursors to a drastic retreat that began in 
the early 1980s. By 1986 the glacier had 
receded about 2 km from the terminal 
moraine that is clearly indicated by the 
sharp discontinuity in iceberg density. Wa­
ter depth over the terminal moraine is no 
more than 22 m, water depth near the 
1986 terminus is about 300 m, and water 

depth in Columbia Bay (toward the viewer 
in this photo) is about 200 m. Retreat o f 
about 30 km is expected over the next 
several decades. 

T h e retreat o f Columbia Glacier was 
just one o f the many glacier-related topics 
discussed at the May 1986 AGU Chapman 
Conference on Fast Glacier Flow. For a 
report o f that meeting, see page 638 
(Photograph 7 9 L 3 - 0 2 8 , August 22, 1979, 
taken by Austin Post, U.S. Geological Sur­
vey, Tacoma, Wash.) 



T h e most important difference between the 
CDF and conventional data format standards, 
such as the F L A T D B M S [Smith and Clauer, 
1984, 1986] and its predecessor, Block Data 
Set [McPherron, 1976], is in the nature o f the 
data descriptions maintained within the CDF 
and of its supporting software (see the imple­
mentation section below). It should be noted 
that although there are similarities between 
CDF and earlier efforts, such as F L A T D B M S , 
CDF was developed independently o f them. 
Each o f these data descriptions in the CDF 
not only defines the name o f each data vari­
able and its units (e.g., T E M P E R A T U R E 
[DEGREES KELVIN]) , but also specifies the 
organization o f the individual values o f the 
variable into a construct consistent with the 
interpreted dimensionality o f the data ensem­
ble. Although F L A T D B M S , for example, 
does maintain some internal data descriptions 
similar to CDF, such metadata does not in­
clude the definition o f multidimensional (i.e., 
nonscalar) constructs. CDF provides the abili­
ty to define such multidimensional structures, 
which are a mechanism for viewing a data en­
semble that constitutes some conceptual enti­
ty o f interest to a user (e.g., an atmospheric 
temperature profile, that is, a collection o f 
temperatures at various levels in the atmo­
sphere). Block Data Set, for example, sup­
ports multidimensional structures, but unlike 
CDF, it is limited only to the sequential access 
o f multiple variables, which are assumed to 
be sampled at equidistant intervals [McPher­
ron, 1976]. 

T h e simplest such data construct would 
represent one dimension o f data, a collection 
or vector o f numbers. T h e next level would 
imply two dimensions o f data as two parallel 
vectors, such as an atmospheric profile with a 
vector o f values and a vector o f levels, each o f 
which corresponds to a value. A three-dimen­
sional construct implies a matrix o f values 
and a matrix o f auxiliary data, such as a map 
of values at specific latitude-longitude loca­
tions. Another example would be the combi­
nation o f two two-dimensional constructs: a 
time history o f values and a profile o f values 
to yield a profile history; for example, a col­
lection o f information as a function o f time 
and atmospheric height. 

Table 1 shows this progression o f data con­
structs, provides some climatological exam­
ples, and illustrates ways o f viewing such enti­
ties graphically. It should be emphasized that 
although the examples are primarily from the 
atmospheric sciences, the techniques apply to 
regularly structured data from any discipline. 

Conceptual Organization 
As Table 1 suggests, the number o f inter­

esting multidimensional data constructs is 
quite large, even when the field o f interest is 
restricted to climatology. Moreover, the CDF 
must be capable of storing data ensembles 
from a number o f other disciplines, including 
(at least) earth science, solar-terrestrial phys­
ics, oceanography, planetary astronomy, and 
astrophysics. Clearly, it would not be practical 
to design such data constructs into the CDF 
individually on a one-by-one basis. Instead, 
the CDF incorporates a generic data handling 
mechanism that applies universally to a class 
o f multidimensional data constructs. 

T h e goal o f handling such a diverse collec­
tion of data objects creates the potential for 
an individual CDF to become an assortment 
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T A B L E 1. Multidimensional Data Constructs 

Dimensions 
o f Data 

Supported Data Type 
Graphic 

Examples 

1 flat data 

2 time histories, atmospheric profiles, 
zonal means, particle spectra 

3 grids/images, zonal profiles, zonal 
histories, profile histories, spectra 
histories 

4 grid/image histories, gridded profiles, 
zonal profile histories 

5 gridded profile histories 

histogram 

X-Y plot 

contour plot, 3-D surface, 
color image, X-Y-Z plot 

animated contours, animated 
3-D surface, 3-D surface 
with color 

animated 3-D surface with 
color 

o f entities o f various dimensionalities and 
sizes. T h e correlation o f objects o f different 
dimensionalities within a single CDF could be 
ill-defined, relying on higher-level data-de­
pendent software to resolve potential ambigu­
ities. This problem is solved by specifying 
that a CDF be built as a multitude o f similar 
structures. Each CDF is (conceptually) com­
posed o f repetitions o f a single n-dimensional 
grid structure, where the number o f dimen­
sions and size o f each dimension in such a 
structure is arbitrary but is defined by the 
programer at the time of initial CDF creation. 
T h e overall CDF data ensemble is generated 
by propagation o f this grid structure from 
variable to variable and from record to re­
cord, with each occurrence o f the grid carry­
ing its own collection o f data values. Data val­
ues are correlated between different occur­
rences o f the grid by means o f grid indices: 
for example, a data value in one occurrence 
of the grid is correlated to that specific data 
value in another occurrence o f the grid that 
has identical indices. 

T h e dimensionality o f this basic grid struc­
ture, the number o f variables, and the num­
ber o f records can all be specified indepen­
dently. In other words, the CDF is construct­
ed from fundamental building blocks, whose 
size imposes no restriction on the number 
used or on their arrangement. As a conse­
quence, there is no a priori correlation be­
tween the dimensionality o f the building 
block (basic grid structure) and the dimen­
sionality o f the data ensemble as a whole. T o 
avoid confusion, the dimensionality o f the ba­
sic grid structure will be referred to as the 
CDF rank. T h e CDF rank then is the dimen­
sionality o f its basic building block or the 
number o f dimensions in the basic grid struc­
ture. 

Figure 1 shows the concept o f CDF data 
organization, a uniform multidimensional 
block structure for a CDF o f rank two. T h e 
simplest or degenerate case o f a CDF basic 
grid structure is one of rank zero; it contains 
only a single data value, or scalar. This can be 
envisioned by substituting a single data value 
for each two-dimensional grid in Figure 1. 
Such a CDF is virtually identical to the 
F L A T D B M S structure [Smith and Clauer, 
1984]. It should be noted that although the 
dimensionality o f each variable in a CDF may 
not be the same, a basic grid structure is con­
structed to encompass all o f the variables, 
and its rank is assigned accordingly. Despite 

the sequential layout o f the data in Figure 1, 
each element o f each grid and o f each record 
can be accessed in any order. 

T h e CDF conceptually supports an organi­
zational hierarchy that, at the basic level, clas­
sifies units o f data into elements or variables, 
each o f which corresponds to a single observ­
able parameter. These variables can be de­
scribed by attributes. A single atom o f one o f 
these variables, or a single observed value or 
datum, can be visualized at the grid points o f 
the n-dimensional basic grid that is invariant 
within a CDF. In Figure 1, each basic grid 
block contains 25 atoms, and hence there are 
25 values for each variable. Basic grids for a 
group of variables are collected into a record 
(i.e., one block for each variable). A collection 
o f records constitute a data ensemble. A vari­
able is referenced by its mnemonic, which 
points to the corresponding metadata (e.g., 
attributes) in a CDF. 

T h e CDF is composed o f more than just a 
data ensemble. There is a data dictionary and 
attribute table that contain the various afore­
mentioned characteristics and ancillary infor­
mation that define the data ensemble com­
pletely. T h e data dictionary specifies whether 
or not each variable varies with respect to 
records (record variance) or to the individual 
dimensions o f the basic grid structure (di­
mensional variance). T h e attribute table sup-

Record 
Number 

Fig. 1. Conceptual view o f a CDF data 
ensemble with rank = 2. 
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ports specific information about variables, 
such as name, mnemonic, scientific units, 
type (e.g., real*4, integer*2 in the Fortran 
sense), range, resolution, and display format, 
as well as global information about the entire 
ensemble. This global information might in­
clude (for example) statistics, which could in­
clude minimums and maximums, and text, 
which can be used to support documentation. 
T o help illustrate these concepts, a simple ex­
ample is presented in the following section. 

An Example CDF Structure 
Table 2 contains a simple data ensemble 

that can be used to illustrate the various 
aforementioned CDF concepts. This ensem­
ble contains a collection o f temperature mea­
surements at different times and locations. 
T h e accompanying box (Description o f One 
Variable (Attributes)) shows an example o f 
the type o f general descriptions or attributes 
that CDF supports in its data dictionary for 
data elements or variables. I f one examines 
the data ensemble in detail, it becomes appar­
ent that it contains more than a simple flat 
structure, despite its given organization. For 
example, time is organized into blocks o f four 
identical values. Latitude and longitude are 
each cyclic, with two fixed values ( + 30, + 4 0 ) 
and ( - 1 6 5 , - 1 5 0 ) , respectively. Hence the 
temperature values are organized into a 2 x 
2 grid for each observation, where longitude 
and latitude represent the dimensions o f that 
grid. CDF supports this type o f data structure 
implicitly. T h e 2 x 2 temperature grid actu­
ally implies a uniform 2 x 2 virtual block 
structure (i.e., a CDF o f rank 2) for the entire 
CDF. In addition, the CDF software can take 
advantage o f information about such data 
structures to conserve storage space. This in­
ternal elimination o f redundancy is illustrated 
in Figure 2 and the accompanying Table 3. 
T h e CDF specifications presented in Table 3 
show the information that the programer 
must provide in order to eliminate such re­
dundant data storage. In this example, lati­
tude and longitude are invariant with respect 
to record number and hence are stored only 
once. T h e uniform block structure implies 
that the values o f the elements that are in­
variant with record number (i.e., latitude and 
longitude) appear to be duplicated for succes­
sive records and that the values o f the ele­
ments that are invariant with respect to a ba­
sic grid dimension (i.e., time) appear to be 
duplicated across that dimension. CDF por­
trays to the programer a uniform block struc­
ture in which equal random access to all ele­
ments is provided, while any redundant stor­
age inherent in that structure is eliminated 
for its physical storage. Although this simple 
example shows a time series o f data organ­
ized into a single grid structure, CDF can just 

Record Number 

Sample CDF Data Ensemble Structure 

Physical Structure 

Variables 

TIT© (1) Longitude (2) Latitude (3) Temperature (4) 

0 1 0 0 - 1 6 5 - 1 5 0 + 4 0 

+ 3 0 

1 9 0 

1 9 6 • 
• 

195 

2 0 0 

194 

2 0 3 

Virtual (Conceptual) Structure (Programer's View) 

Variables 

Record Number Tme(1) Longitude (2) Latitude(3) Temperature (4) 

1 1 0 0 * » 1 0 0 

1 0 0 J 1100 

- 1 6 5 n j-150 

. 1 6 5 J 1-150 

+ 4 0 I J+40 
+ 3 0 1 1+30 

1 9 0 « * 195 

1 9 6 1 1200 

2 1 3 0 * 1130 

1 3 0 1 1130 

- 1 6 5 * 1-150 

. 1 6 5 J 1-150 

+ 4 0 n j+40 
+ 3 0 1 1+30 

1 9 7 w * 1 9 4 

1 9 5 1 1203 

Fig. 2. Sample CDF data ensemble structure. 

_ 

as easily handle non—time series data organ­
ized into complex grids. 

Implementation 
T h e CDF isolates the details o f the struc­

ture o f a data set from a user o f such data in 
any applications software. Therefore the pro­
gramer o f such applications only needs to 
know about the collection o f CDF operations. 
These operations, which are maintained in 
the CDF interface routine library, permit a 
programer to create, access, fill, extract, and 
query the data and variable attributes in a 
CDF. T h e programer does not need to know 
the details o f the CDF storage nor the under­
lying software structure because the CDF is 
implemented as a data abstraction [Shaw, 
1984; Berlins et al, 1986]. This isolation per­
mits enhancements to the CDF implementa­
tion as new software and hardware technolo­
gy permit, without requiring changes to ap­
plications software. T h e user simply perceives 
improved performance or functionality (in 
other words, the CDF structures and imple­
mentation are transparent to the user). In ad­
dition, the CDF concept is extensible in the 
programer's perspective by the addition o f 

T A B L E 2. Example CDF Structure: Data Ensemble 

Variables 

Record Number T ime (1) Longitude (2) Latitude (3) Temperature (4) 

1 0100 - 1 5 0 . + 30. 200. 
2 0100 - 1 5 0 . + 4 0 . 195. 
3 0100 - 1 6 5 . + 30. 196. 
4 0100 - 1 6 5 . + 4 0 . 190. 
5 0130 - 1 5 0 . + 30. 203 . 
6 0130 - 1 5 0 . + 4 0 . 194. 
7 0130 - 1 6 5 . + 30. 195. 
8 0130 - 1 6 5 . + 4 0 . 197. 

new operations. Hence the interface routine 
library or the CDF software package is a tool­
box o f programing primitives for managing 
multidimensional data ensembles; it provides 
a simple abstract view for random access o f 
arbitrary blocks o f data. Any analysis or other 
applications capabilities must be built into 
higher-level software that employs CDF. T h e 
programer that utilizes the CDF data abstrac­
tion views the CDF interface routine library 
as consisting o f 13 operations that address 
the basic features o f the CDF: dictionary, 
structure, data ensemble, summary statistics, 
and documentation, as well as general file 
management. T h e library represents the For­
tran language bindings for these operations 
as implemented for Digital Equipment Cor­
poration (DEC) VAX/VMS computer systems. 
These abstract routines are designed to make 
it easy for a programer to utilize data in 
terms o f CDF, independently o f the complex­
ity o f the data. Optimization for high-per­
formance (minimal use o f memory, central 
processing unit resources, and input/output 
operations) in the VAX/VMS environment 
has been incorporated within the CDF soft­
ware to eliminate the overhead that is typical­
ly present in data management systems that 
use simple sequential files (e.g., Block Data 
Set), but it is also isolated in a way which sim­
plifies future porting to other operating sys­
tems. For example, the physical structure o f a 
CDF on VAX/VMS systems consists o f n + 2 
binary random access files, where n is the 
number o f variables in the CDF. T h e other 
two files contain the data dictionary with its 
related statistics and documentation (i.e., me­
tadata) and the definition o f the data struc­
ture, respectively. However, these files are 
transparent to the user and appear integrated 
as a single CDF via the CDF software. In ad­
dition, the CDF software employs a high­
speed caching algorithm similar to those that 
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T A B L E 3. Sample CDF Data Ensemble Specifications 

Variables 
Attribute 

T ime (1) Longitude (2) Latitude (3) Temperature (4) 

First Dimension Variance (->) False True False True 
Second Dimension Variance ( | ) False False True True 
Record Variance True False False True 
Data Type Integer * 4 Real * 4 Real * 4 Real * 4 

Description o f One Variable (Attributes) 

Variable mnemonic 
Variable name 
Variable units 
Resolution 
Display format 
Valid range 

T E M P 
temperature 

degrees Kelvin 
0.6 

F7.3 
170. to 290 . 

typical virtual memory operating systems 
(e.g., VAX/VMS) utilize to shuttle data quick­
ly in and out o f memory. This ensures that 
blocks o f data that are randomly requested by 
a programer in one or more CDFs are rapid­
ly available on an as-needed basis. 

T h e operations o f the library include rou­
tines to create, open, close, delete, and in­
quire about a CDF; to create and inquire 
about CDF variables; to enter or extract data 
from a variable; to create and inquire about 
CDF attributes; and to enter or extract infor­
mation from an attribute. It should be noted 
that once all o f the variables have been speci­
fied through a "create CDF variable" routine, 
the programer does not need to keep track o f 
dimension and record variances: T h e CDF 
package will manage this information. Al­
though a programer is free to create applica­
tions-specific attributes, there are conventions 
for various CDF attributes that are employed 
in CDF-based applications at NSSDC (e.g., 
variable name for labeling a plot axis [Gough, 
1987]). 

Status and Applications 
As stated earlier, a subset o f the CDF was 

first implemented in 1982 as a means o f pro­
viding data-independent access, display, and 
manipulation o f several types o f multidimen­
sional data within the prototype version o f 
the PCDS [Treinish, 1984]. This implementa­
tion provided only some o f the features o f 
the complete CDF as a proof o f concept. Var­
ious software packages were built as CDF ap­
plications to permit the PCDS users to easily 
manipulate and display (through computer 
graphics) data o f interest. T h e full implemen­
tation of the CDF is now complete and has 
been undergoing alpha testing at NSSDC. 
T h e CDF software is also undergoing beta 
testing at several other sites that support data 
from a number o f different disciplines. (Al­
pha testing o f software implies rigorous utili­
zation in new applications within the software 
developers' organization, while beta testing 
involves evaluation by volunteers outside o f 
the original organization.) Within NSSDC, 
many applications are being built upon this 
structure, including redesigned operational 
data access, data manipulation and graphics 
capabilities within the PCDS, support o f data 
analysis, management and graphics for 
CDAW, and graphics capabilities for the 
PLDS. T o support these various analysis and 
display applications, a generic layer called the 
Virtual Data Table (VDT) has been devel­

oped on top o f CDF. T h e V D T provides a 
"spreadsheet"-type window on any arbitrary 
two-dimensional subset o f a multidimensional 
structure within a CDF [Gough, 1986]. 

Once the CDF software and generic CDF 
applications were established at NSSDC, these 
tools were then used to support a number o f 
scientific research activities in many different 
disciplines. Dozens o f different data sets, in a 
variety o f mutually incompatible formats, 
have been very easily and quickly converted 
to CDFs via programs that use the CDF soft­
ware. Although new data sets are being con­
verted every day through such custom pro­
grams, other generic software is being devel­
oped to convert one or more classes o f 
different formats or data base representations 
o f data (which may support many different 
data sets) to CDF. Once any data, whether 
they are simple or complex in nature, are 
available in CDF, powerful data-independent 
applications available at NSSDC in systems 
such as the PCDS can be used to work with 
such data for data display (e.g., x-y plots, con­
tour plots, histograms, maps, etc.) or for data 
analysis (e.g., through the Interactive Data 
Language, or IDL) in a generic fashion [Re­
search Systems Inc., 1986]. Before the advent o f 
CDF, customized applications typically had to 
be developed to work with complex data in 
their original format. (Smith and Clauer [1984] 
and McPherron [1976] outline notable excep­
tions to this common situation.) Now, robust 
CDF-based applications, already available at 
NSSDC, can be utilized with such data, once 
they are available in CDF. 

Conclusion 
T h e CDF is an abstraction for the data-in­

dependent storage and management o f mul­
tidimensional data, in which the data ensem­
ble appears to be built from multiple occur­
rences o f a single n-dimensional block that is 
consistent with the scientific interpretation o f 
the data (i.e., it provides a user's view o f the 
data rather than that o f the programer). T h e 
values for different variables are correlated 
simply by specifying identical record numbers 
and basic grid indices. Redundant physical 
storage o f data for cyclic variables is eliminat­
ed by the specification o f record and grid di­
mension variances. T h e CDF structure pro­
vides flexibility in application and simplicity 
in use. For example, CDF can support data 
ranging from simple collections o f scalar 
measurements to very large multispectral im­
ages (e.g., from LANDSAT) to complex mul­
tidimensional structures. Hence this flexibility 
and simplicity together yield power for the 
development o f comprehensive, generic sys­
tems to support data management and correl­
ative data analysis. This power is needed by 
the National Space Science Data Center to 
help fulfill its goal o f providing the research 
community with ready access to easy-to-use, 

well-documented data. I f readers are interest­
ed in learning more about CDF, please con­
tact the authors at NSSDC (or NSSDCA-
::Treinish and NSSDCA::MGough on the 
Space Physics Analysis Network (SPAN)). Ad­
ditional documentation about CDF and 
copies o f the CDF Implementer's Guide 
[Gough, 1987], as well as the V A X / V M S im­
plementation o f the CDF Software Package 
for beta testing, are available through the 
NSSDC Request Office, Code 630.2 , NASA/ 
Goddard Space Flight Center, Greenbelt, MD 
20771 (or N S S D C : : R E Q U E S T on SPAN). 
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