Data Set Catalog # 222
Apollo 14, 15 and 16

BISTATIC RADAR EXPERIMENT 71-008A-04A,04B,04C 71-063A-14A,14B,14C 72-031A-12A,12B,12C 9 tapes

Table of Contents

- 1. Introduction
- 2. Errata/Change Log
- 3. LINKS TO RELEVANT INFORMATION IN THE ONLINE NSSDC INFORMATION SYSTEM
- 4. Catalog Materials
 - a. Associated Documents
 - b. Core Catalog Materials

1. INTRODUCTION:

The documentation for this data set was originally on paper, kept in NSSDC's Data Set Catalogs (DSCs). The paper documentation in the Data Set Catalogs have been made into digital images, and then collected into a single PDF file for each Data Set Catalog. The inventory information in these DSCs is current as of July 1, 2004. This inventory information is now no longer maintained in the DSCs, but is now managed in the inventory part of the NSSDC information system. The information existing in the DSCs is now not needed for locating the data files, but we did not remove that inventory information.

The offline tape datasets have now been migrated from the original magnetic tape to Archival Information Packages (AIP's).

A prior restoration may have been done on data sets, if a requestor of this data set has questions; they should send an inquiry to the request office to see if additional information exists.

2. ERRATA/CHANGE LOG:

NOTE: Changes are made in a text box, and will show up that way when displayed on screen with a PDF reader.

When printing, special settings may be required to make the text box appear on the printed output.

Version	Date	Person	Page	Description of Change
01				
02				

3 LINKS TO RELEVANT INFORMATION IN THE ONLINE NSSDC INFORMATION SYSTEM:

http://nssdc.gsfc.nasa.gov/nmc/

[NOTE: This link will take you to the main page of the NSSDC Master Catalog. There you will be able to perform searches to find additional information]

4. CATALOG MATERIALS:

a. Associated Documents

To find associated documents you will need to know the document ID number and then click here.

http://nssdcftp.gsfc.nasa.gov/miscellaneous/documents/

b. Core Catalog Materials

APOLLO 14 CSM

13 CM BISTATIC RADAR LUNAR OBS.

71-008A-04A

This data set has been restored. There was originally one 9-track, 1600 BPI tape written in Binary. There is one restored tape. The DR tape is a 3480 cartridge and the DS tape is 9-track, 6250 BPI. The original tape was created on a 930 computer and the restored tape was created on an IBM 9021 computer. The DR and DS numbers along with the corresponding D number are as follows:

DR#	DS#	D#	FILES	TIME SPAN

DR005628	DS005628	D011596	1	02/06/71 - 02/06/71

APOLLO 14

116-CM BISTATIC RADAR LUNAR OBS.

71-008A-04B

THIS DATA SET HAS BEEN RESTORED. IT ORIGINALLY CONTAINED ONE 9-TRACK, 800 BPI TAPE WRITTEN IN BINARY. THERE IS ONE RESTORED TAPE. THE DR TAPE IS A 3480 CARTRIDGE AND THE DS TAPE IS 9-TRACK, 6250 BPI. THE ORIGINAL TAPE WAS CREATED ON AN IBM 360 COMPUTER AND WAS RESTORED ON THE MRS. THE DR AND DS NUMBER ALONG WITH THE CORRESPONDING D NUMBER AND TIME SPAN IS AS FOLLOWS:

DR#	DS#	D#	FILES	TIME SPAN
DR003596	DS003596	D011595	1	02/06/71 - 02/06/71 (a)

(a) TWO READ ERRORS ON RECORDS 10 AND 7214

APOLLO 15 CSM

13 CM BISTATIC RADAR LUNAR OBS.

71-063A-14A

This data set has been restored. There were originally two 7-track, 800 BPI tapes written in Binary. There is one restored tape. The DR tape is a 3480 cartridge and the DS tape is 9-track, 6250 BPI. The original tapes were created on a 930 computer and the restored tapes were created on an IBM 9021 computer. The DR and DS numbers along with the corresponding D numbers are as follows:

DR#	DS#	D#	FILES	TIME SPAN
DR005637	DS005637	D011591	1	08/01/71 - 08/01/71 (a)
		D011592	2	08/01/71 - 08/01/71

(a) D011591: Read error occurred in record 3147 of file 1.

PSPG 00584

APOLLO 15 CSM

116-CM BISTATIC RADAR LUNAR OBS.

71-063A-14B

This data set has been restored. There was originally one 7-track, 800 BPI tape written in Binary. There is one restored tape. The DR tape is a 3480 cartridge and the DS tape is 9-track, 6250 BPI. The original tape was created on an IBM 930 computer and the restored tape was created on an IBM 9021 computer. The DR and DS numbers along with the corresponding D number are as follows:

DR#	DS#	D#	FILES	TIME SPAN
DR005894	DS005894	D011593	1	08/01/71 - 08/01/71

13-CM BISTATIC RADAR LUNAR OBS.

72-031A-12A

This data set has been restored. There were originally two 7-track, 800 BPI tapes written in Binary. There is one restored tape. The DR tape is a 3480 cartridge and the DS tape is 9-track, 6250 BPI. The original tapes were created on a XDS computer and the restored tapes were created on an IBM 9021 computer. The DR and DS numbers along with the corresponding D numbers are as follows:

DR#	DS#	D#	FILES	TIME SPAN
DR005649	DS005649	D011589	1	04/23/72 - 04/23/72 (a)
		D011588	2	04/23/72 - 04/23/72

⁽a) D011589: Read error occurred in record 309 of file 1.

71-008A-04A

Apollo 14, 13 CM Bistatic Radar Lunar Obs.

The data is contained on one 800 BPI, 9 track, binary XDS-sigma V tape with one file. A 7track C copy was made.

D-11596

C-09246

2/06/71 - 2/06/71

71-008A-04B

Apollo 14, 116 CM Bistatic Radar Lunar Obs.

The data is contained on one 800 BPI, 9 track, Binary, XDS-sigma V tape with one file. A 7 track C copy was made.

D-11595

C-09247

2/06/71 - 2/06/71

71-063A-14A

Apollo 15, 13 CM Bistatic Radar Lunar Obs.

The data is contained on two 800 BPI, 9 track, Binary, XDS-sigma V tapes with one file each. Two 7 track C copy's were made.

D-11591

C-09248 1 of 2

8/01/71 - 8/01/71

D-11592

C-09249

2 of 2 8/01/71 - 8/01/71

71-063A-14B

Apollo 15, 116 CM Bistatic Radar Lunar Obs.

The data is contained on one 800 BPI, 9 track, Binary, XDS-sigma V tape with one file. A 7 track C copy was made.

D-11593

C-09250

8/01/71 - 8/01/71

72-031A-12A

Apollo 16, 13 CM Bistatic Radar Lunar Obs.

The data is contained on two 800 BPI, 9 track, Binary, XDS-sigma V tapes with one file each. Two 9 track C copy's were made.

D-11589

C-09251

1 of 2

4/23/72 - 4/23/72

D-11588

C-09252

2 of 2 4/23/72 - 4/23/72

72-031A-12B

Apollo 16, 116 CM Bistatic Radar Obs.

The data is contained on one 800 BPI, 9 track, Binary, XDS-sigma V tape with one file each. A 7 track C copy was made.

D-11590

C=09253

4/23/72 - 4/23/72

71-008A-04C

71-063A-14C

72-031A-12C

D-12324

Apollo 14, 15, 16 Combined Bistatic Radar Obs. C-09582

This data is contained on one 800 BPI, 9 track, Binary, XDS-sigma V tape with 6 files. A 7 track C copy was made.

<u>D#</u>	C# FILE	CONTENTS	DATE DATA WAS TAKEN
D-1 12324	c. 04 5821	Apollo 14, 116CM	2/06/71
D-	C · 2	Apollo 14, 13 CM	2/06/71
D	C- 3	Apollo 15, 116CM	8/01/71
D-	C-: 4	Apollo 15, 13 CM	8/61/71
D	C- 5	Apollo 16, 116CM	4/23/72
D-:	c6	Apollo 16, 13 CM	4/23/72

July 24, 1973

To:

Data Repository

From:

ADP Services

Subject: Apollo 14, 15, 16 Combined Bistatic Radar tape.

Please release tape DD11594 and the corresponding DC number and return to G. R. Dow as per attached letter. A replacement tape DD12324 has been received, processed and placed in the NSSDC library.

July 24, 1973

Mr. G. R. Dow Center for Rader Astronomy Dept. of Electrical Engineering Stanford University Stanford, California 94305

Subject: Your letter and shipment of June 25, 1973, concorning the Bistatic Radar data tape.

Dear Mr. Dow,

We are returning, under separate cover, the magnetic tape containing Apollo 14, 15 and 16 Bistatic Radar data which you sent to us earlier this year. The replacement tape has been duplicated and placed in the NSSDC library. If you have any questions please call us.

Yours truly,

Joseph R. Johns Manager, ADP Services

Under Separate Cover:
Magnetic tape containing
Apollo 14, 15 and 16 data (1)

To: C. Wende

From: ADP Services

Subject: Apollo 16 Bistatic Radar data tapes

There is a data word discrepancy in the header record of the Apollo 16, Bistatic Radar data tapes. Words 43 and 44 indicate day and year that the data were collected in integer format. Word 45 and 46 also indicate Julian Ephemeris day at 00.00.00 GMT or day the data was collected in dcuble precision format. Based on our conversion of words 43 and 44 the time the data were collected is 4/23/72. When data for words 45 and 46 were calculated on the ephemeris day program (Julian) we came up with a time that data were collected as 4/22/72. The tapes were processed using the first date; 4/23/72. If there are any objections please contact ADP Services.

From S.c. Butter - Roder Er. (5-170)

Droft

Appendix IV

APOLLO 14, 15, 16

13 C M ELEVATE LEME TO DE COLONIO C

JM Doptrack Tape Formats

This appendix describes the tape formats for the JM Doptrack Tapes generated in Subtask 6 of the text. Tapes are 9 track, binary in XDS Sigma machine images. These tapes contain the output of the polarimeter in Subtask 4, the corrected fractional polarization obtained from Subtask 5, MSC trajectory data, and certain ancillary quantities computed at Stanford. All records within the given file are the same length. There may be more than one tape per file. Files are identified by a header record which contains a brief description of the tape contents. This Appendix describes the tape organization, the file organization, and the record formats for the JM Doptrack tapes. Definitions of the tape contents are either given here or described by reference.

A. Tape Organization

File	No. Tapes	Contents	Record Length
1	1	Apollo-14 116 cm	514
2	1	Apollo-14 13 cm	514
3	1	Apollo-15 116 cm	1026
4	2	Apollo-15 13 cm	514
5	1	Apollo-16 116 cm	1026
6	2	Apollo-16 13 cm	514

B. File Organization

l.	Header Reco	ord	. 4	
2.	Data Record	1 #1		
3.	Data Record	1 #2	Observational	Data
4.	Data Record	#3	Data	Frame
5.	Data Record	#4		
6.	Data Record	#5		
7.	Data Record	#6	ephemeris data	
8.	Ens.			

9. K-of (End of File Work)

Files may be continued across the end of a tape.

C. Header Record Formats

Word No.	Contents	Units	Machine Type
1 : 42	Alphanumeric Tape Identifier	-	A
43	Day of year on which data were collected (January 1 = day 1)		
44	Year data were taken		I
45) 46)	Julian Ephemeris Day at 00:00:00 GMT on the day the data were taken	(days)	DPR
47 } 48 }	Julian Ephemeris Day of reference epoch	(days)	DPR
49	Time increment between data frames	(sec)	R
50	Number of data records following the Header Records (Number of data frames = Number of Data Records + by 6)		1
50 end	No meaningful data		

q A - Alpha numeric

I - Integer

R - Real

DPR - Double precision real

D. Data Frame Formats

1. Data Record Organization

Record No.	Contents	Note:
1	J ₁₁ (k)	116 cm data
2	J ₂₂ (k)	J ₁₁ (k) - <u>Left</u> circu- lar polariza-
3	Real part of J ₁₂ (k)	tion
4	Imaginary part of J12(k)	J ₂₂ (k) - Right circu- lar polariza-
5	Y(k)	lar polariza- tion
6	Spacecraft ephemeris and ancillary data	13 cm data $J_{11}(k) - \frac{\text{Right circu-}}{1\text{ar poliriza-}}$
•		tion
		J ₂₂ (k) - <u>Left</u> circu- lar polari- zation
		2002011

2. Format Records 1-5 (all markine type REAL)

Word No.	Contents	
1	Data described under D.1	above
: 513/1025		
514/1026	Sequential Record No.	

3. Format Record 6 (all machine type Real)

Word No.	Contents	Units
1	Frame No. (data record no. mod 6)	
2	UT2	(sec)
3	Difference of reflected and direct dopplers,	
	> 0 for reflected doppler > directed doppler	(Hz)
4	Predicted bandwidth for O.1 radian rms surface slope	(IIZ)

3.	Format	Record	6	(all	machine	type	Real)	(cont.))
----	--------	--------	---	------	---------	------	-------	---------	---

J. Pormat Record	0 (1122 11111111111111111111111111111111	
Word No.	Contents	Units
5	Angle of incidence	(deg)
6	Spacecraft altitude (mean lunar radis assumed 1736 km)	(km)
7 .	Spacecraft speed	(m/sec)
8	Radar cross section predicted for smooth conducting moon	(dim)
9	(Radar cross section)/ (received power)	(m ² /w)
10	X) Components of Seleno-	
11	y graphic unit position vector of spacecraft	
12	z) location	(dim)
13	X Components of Seleno- graphic unit position	
14	vector of specular	(44-1
15	z) point location	(dim)
16	Latitude of sub-spacecraft position	(deg)
17	Longitude of sub-spacecraft position	(deg)
18	Component of doppler shift due to earth roatation	(Hz)
19	Total doppler shift of reflected signal	(Hz)
20	Latitude of specular point	(deg)
21	Longitude of specular point	(deg)
22	Speed of the specular point on the lunar surface	(M/sec)
23	Vehicle look angles to earth	(deg)
24	$\begin{pmatrix} \alpha_{e} \\ \beta_{e} \end{pmatrix}$	
25	Euler angles of local horizon	(deg)
26	φ coordinates	
	· · · · · · · · · · · · · · · · · · ·	
27		

3. Format Record 6 (all machine type Real) (cont.)

Word No.	Contents	Units
28 29 30	X Spacecraft selenographic unit velocity vector	(dim)
31 32 33	X Selenographic unit vector to earth	(dim)

The data frames are repeated each 6 records. The first data frame occupies records 2-7, the next 8-13, etc.

Note: Data do not always progress uniformly in time. Occasionally, data frames will reverse slightly in time for one frame, and then continue forward. This effect is caused by the sampling procedure in which a small deliberate overlap was inserted. Time teles on data are correct.

E. Definition of Contents

- 1. Data the data have been defined under Subtasks 4 and 5 of the text.
- 2. Ephemeris and Ancillary Data the formular used in computing trajectory related parameters are given in Appendix E.

From S. U. Britati - Rosen 2x. (5.170)

APOLLO 1. 15, 1%

Appendix VI

Integral Tape Format

Combined Bisitio William 71-0084-046

The integral tape contains reduced data records generated in Subtasks 7, 8 and 9 (of Block Diagram I). This appendix gives the detailed formating of that tapes and describes all ancillary computations.

A. Tape Organization

The table below gives the file contends and data record length for the integral tape.

File No.	Contents	Record Length
1	Apollo-14 116 cm	50 words
2	Apollo-14 13 cm	50 words
3	Apollo-15 116 cm	50 words
4	Apollo-15 13 cm	50 words
5	Apollo-16 116 cm	50 words
6	Apol10-16 13 cm	50 words

The tape is 9 track, 800 BPI, binary in XDS Sigma V machine images.

File Organization

- 1. Header Record
- Data Record
- 4. (EOF) (End of File)
- 5. Header Record

A - Alpha numeric

DPR - Double precision real

CH	eador	Record	Format

Word No.	Contents	Units	Machine Type
1/42	Alpha numeric File Identifier		Α
43	Integer Day Number (Jan. 1 = 1)	(day)	I
44 .	Integer Year (GREGORIAN)	(year)	1
45 46	Double precision Julian emphermis day number at OO:00 GMT on day data were taken	(day)	DPR
47 48	Double precision Julian ephermis day of reference epoch	(day)	DPR
49	Time increment between data records	(sec)	R
50	Number of data records following this header record		r

D. Data Record Format (all machine type real)

Word No.	<u>Contents</u> <u>Units</u>
1	Data frame number from JM Doptrack tape
2 .	Time data were taken: (UT2-)
3 4 . 5	Y Components of seleno- graphic unit position vector of spacecraft location (dim)
6 7 8.	Y Components of seleno- graphic velocity unit vector (dim)
9	Speed: Magnitude of space- craft velocity vector (m/sec)
10 11 12	Components of seleno- graphic unit vector from center of the moon to center of the earth Components of seleno- graphic unit vector from center of the moon to

D. Data Record Format (all machine type real) (cont.)

	Word No.	Contents	Units
•	word no.		
	13	Components of seleno-	
	14	y graphic unit position vector of specular point location	(dim)
	15	Z) point location	
	16	θ) Euler angles of space-	
	17	craft attitude and local horizon frame	
	18	$\vec{A}_{veh} = \begin{bmatrix} \phi \\ (x) \end{bmatrix} \begin{bmatrix} \psi \\ (z) \end{bmatrix} \begin{bmatrix} \theta \\ (y) \end{bmatrix}$	Ā
		(cw rotation looking in + a	
	19	α) Vehicle look angles to	,
	20	s specular point	(deg)
	21	6 Angle between plane of	
		incidence and plane-	
		containing vehicle x axis and direction	
		vector to specular	
		point	(4.8)
	22	αe Vehicle look angles	(deg)
	23	γe Vehicle look angles to earth	(ack)
	24	Selenographic latitude of spacecraft position	(deg)
		Selenographic longitude of	,
	25	spacecraft position	(deg)
	26	Selenographic latitude of	(deg)
		specular point	(deg)
	27	Selenographic longitude of specular point	(deg)
	28	Angle of incidence	(deg)
	29	Instantaneous speed of	
		specular point on lunar surface	(m/sec)
	30	Predicted bandwidth for .1	
		radian rms surface slope	(Hz)
	31	Difference between reflected and direct doppler shifts	(Hż)
	32	Total doppler shift reflected signal	(Hz)

D. Data Record Format (all machine type real) (cont.)

Word No.	Contents	Units
33	Component of doppler shift due to earth's rotation	(Hz)
314	Al: tude of spacecraft above lunar surface: Radius of center of the moon-1736 Km	(Km)
35	Normalized bistatic-radar cross-section	(dim)
36	Sigfac	(m^2/w)
37	Polarized power	(arb)
38	Normalized polarized power	(°k)
39	Unpolarized power	(arb)
40	Normalized unpolarized power	(°k)
41	Equivalent area bandwidth	(Hz)
42	Normalized absolute moment bandwidth	(dim)
43	Normalized second moment bandwidth	(dim)
44	Centroid of the echo spectrum	(Hz)
45	RMS slopes inferred from equivalent area bandwidth	(deg)
46	Spare if value equals zero, otherwise handscaled one-half power echo bandwidths	(Hz)
47	Data validity flag	(-)
48	Spare if value = 0, otherwise value of spacecraft antenna gain in α_s , β_s , direction (cf Word No. 19, 20)	(dim)
49	Spare	(-)
50	Data record sequence number	(-)

Note: Data do not always progress uniformly in time. Occasionally, data records will reverse slightly in time for one record, and then continue forward. This effect is caused by the sampling procedure in which a small deliberate overlap was inserted. Time tags on data are correct. Overlapping data correspond to the same time interval but different sampling passes. Slight differences arise from variation in exact times averaged.

E. Data Parameter Definitions

The remainder of this section defines the contents of the data records just described above. The individual subsection numbers correspond to the word numbers in Section D (Data Record Format). If a particular quantity has been described at length elsewhere a reference will be given. Otherwise, the quantity is defined here.

- 1. Frame Number identifies the JM Doptrack tape frame number corresponding to the Integral tape record number.
- 2. Time gives the UT2 at which the data were taken. This time corresponds to the mid-point of the averaging interval, as described under Subtask 4. All trajectory parameters have been interpolated to this time, so that geometrical quantities corresponds to the location of the specular point on the mean lunar surface at the middle of the averaging interval.
- 3, 4, 5. Selenographic Unit Position Vector is defined with respect to the lunar surface. This vector is a unit vector directed from the center of the moon for the instantaneous location of the spacecraft. The X, Y, Z directions are defined as follows:

X = Mean Earth direction

Y = Mean direction of the following limb

Z = North polar direction

The selenographic coordinants are obtained by rotation from the selenocentric geoequaltorial units of the spoch given in the Header Record. Procedures are described elsewhere (Tyler, 1968).

- 6, 7, 8. Selenographic Unit Velocity Vector is a unit vector in the direction of the spacecraft velocity. The coordinant system is the same as that given in items 3, 4, 5 above.
- 9. Speed is the magnitude of the spacecraft velocity vector.
- 10, 11, 12. Selenographic Unit Vector to Earth is a unit vector giving the direction from the lunar center of mass to the center of mass to the earth in the selenographic coordinant system described in the 3, 4, 5 above.

- is a unit vector from the center of mass of the moon to the location of the specular point on the mean spherical lunar surface.

 For this computation the lunar radius is taken as 1736 km. The specular point is the location on the mean lunar surface where the angles of incidence and reflection are equal (cf Tyler, [1968]).
- 16, 17, 18. Euler Angles of Spacecraft Attitude connect the space-craft altitude with a local horizon reference frame. Both the local horizon and the Euler angles are defined in Appendix IX.
- 19, 20. Look Angles to Specular Point are the vehicle polar coordinance
 These quantities are defined in Appendix IX.
- 21. Plane of the Vehicle orientation with respect to the plane of incidence is given by the angle δ . This quantity is necessary to define the vehicle attitude with respect to the plane incidence. The angle δ is defined in Appendix IX.
- 22, 23. Look Angles to Earth are the vehicle polar coordinance of a unit vector in the earth center of mass direction. These quantities are computed in the same manner as item 19, 20 above using the unit vector to earth.
- 24. Selenographic Latitude of Spacecraft Position is the selenographic latitude of the sub-spacecraft point computed from the Z component unit vector given in items 3, 4, 5.
- 25. Sclenographic Longitude of Spacecraft Position is the selenographic longitude of the spacecraft of the sub-spacecraft position computed from item 3, 4, 5 according to astrometric convention, western limb of the moon leading.
- 26. Sclenographic Latitude of Specular Point is the selenographic latitude of the specular point on a mean spherical lunar surface computed from item 15.
- 27. Selenographic Longitude of Specular Point is the selenographic longitude of the specular point on the mean spherical lunar surface computer from items 13, 14, 15.

- 28. Angle of Incidence is the angle of incidence on mean spherical lunar surface at the specular point (cf Tyler, 1968).
- 29. Speed of the Specular Point is the speed with which the instantaneous specular point moves across the mean lunar surface (Tyler, 1968).
- 30. Predicted Bandwidth is the one half spectral width predicted for a 0.1 radian rms surface slope, based on the instantaneous angle of incidence and specular point velocity. Computation is after Fjeldbo (1964), also described in Tyler (1968). Fjeldbo gives a theoretical expression for the 1/2 power echo bandwidth

$$\Delta f = 4(21n2)^{1/2} \frac{vs}{\lambda} \frac{h_o}{d_o} \cos \phi$$

where ϕ_s = velocity of the specular point on the mean lunar surface, λ = wavelength of the radiation (either 116 cm or 13 cm), ϕ = angle of incidence at the specular point, and the quantity $\frac{h_0}{d_0}$ = the mean lunar rms slope.

The quantity Δf is the 1/2 power bandwidth predicted for guassian spectrum. Such a spectrum would result from a gently undulating surface with gaussian autocorrelation function.

- 31. Difference Between Reflected and Direct Doppler Shifts is the predicted frequency difference between a wave reflected from the specular point and the signal traveling directly from the spacecraft to earth. Sign convention is such that the difference is positive for a reflected doppler shift greater than that of the direct doppler shift.
- 32. Doppler Shift is the total doppler shift expected fro the reflected signal. Computation of this doppler shift includes spacecraft motion and the earth's rotation, but does not include the rate of change of distance between the earth and the moon.
- 33. Doppler due to Earth's Rotation is the component of the doppler shift for a signal arriving from the direction of the moon due to the earth's rotation.

- 34. Altitude of the spacecraft above the lunar surface has been computed assuming a lunar radius equal to 1736 km. The magnitude of the spacecraft radius vector from the lunar center of mass is obtained by adding the contents of word no. 34 to 1736 km.
- 35. Normalized Bistatic-Radar Cross-Section is the bistatic-radar cross-section of a smooth conducting sphere of the same radius and relative geometry as the moon. Following Fjeldbo (1964) this cross-section is given by

$$\sigma_{\mathbf{B}} = \frac{\mu_{\pi} R_{1}^{2} \cos \phi}{\left(\cos \phi + \frac{2d_{\mathbf{or}}}{R}\right) \left(1 + \frac{2d_{\mathbf{or}} \cos \phi}{R}\right)}$$

where

 R_1 = distance from transmitter to the center of the moon

 $R = lunar radius (1.736 \times 10^6 m)$

 ϕ = angle of incidence (cf item 28)

dor = distance from the transmitter to the specular
 point on the mean lunar surface.

36. Sigfac - is a multiplicative constant relating instantaneous geometry and received power to surface reflectivity.

$$SIGFAC = \frac{(h_{\pi})^2 R_1^2 R_2^2}{A P_T G_T G_B}$$

where

 R_1 = distance from transmitter to center of the moon

 R_2 = distance from receiving site to center of the moon

A = effective aperture of receiving antenna

 P_{T} = transmitted power

 $G_{T}^{}$ = transmitting antenna gain in specular point direction

 σ_{β} = bistatic-radar cross-section for a perfectly conducting moon

For convenience, this expression is evaluated with the following numerical values for the quantities above:

 R_1 = instantaneous value from MSC trajectory σ_B = instantaneous value from item 35 above R_2 = 4 x 10⁸ m A = 0.5 (22.5)² π G_T = 1 P_T = .2.5 w

These values give only order of magnitude results for this experiment.

37. Polarized Power - is the experimenter's best estimate of the polarized component of the received echo total power. Extraction of the polarized power is discussed elsewhere (cf Subtask 8).

Denote the polarized power spectrum $P_p(k)$. Consider the figure below. Polarized power is determined from

$$P = \sum_{k=B_1}^{B_2} (P_p(k) - n)$$

The $P_p(k)$ is a polarized power spectrum. In the determination of $P_p(k)$, the signal limits B_1 , B_2 and R_2 and R_3 are selected by the experimenter. The quantity R_3 is chosen on the basis of

$$\sum_{B_1^{\dagger}}^{B_2^{\dagger}} (P_p(k) - \hat{n}) \sim 0$$

where B_1^{\dagger} , B_2^{\dagger} represent spectral limits containing no echo signal, and \hat{n} represents a sequence of trials of n. The limits B_1 , B_2 , B_1^{\dagger} , B_2^{\dagger} , are varied as is necessary to follow the changing echo signal.

38. Normalized Polarized Power - the quantity contained in item 37 divided by the average power spectral density of the system noise level. This quantity has been discussed in detail elsewhere (cf Subtask 8).

Using the notation introduced under item 37,

Normalized Polarized Power = P/n

where P and n have the same meaning as above.

- Note: P/n is extremely sensitive to the choice of n. Thus, polarized power is considered the best overall measure of received polarized echo power. But, P/n provides the only method, through the measure of system temperature, of obtaining an absolute power calibration. Similarly, the value of n may be determined from the ratio of polarized power to P/n, so that the variations and system temperature and/or gain may be estimated.
- 39. Unpolarized Power is the analogous quantity to item 37, for the unpolarized power spectrum. The unpolarized power is obtained in a manner similar to that used to compute polarized power. Letting

 $P_{\mathbf{u}}(\mathbf{k})$ represent the unpolarized power spectra, and referring to the figure below, the unpolarized power is given by

$$U = \sum_{\widetilde{B}_{1}}^{\widetilde{B}_{2}} (P_{u}(k) - \widetilde{n})$$

where the tilda's refer to the values of B and n used in the unpolarized power spectrum. In general, the limits for the polarized and unpolarized echoes will be different, as will the value of the system noise level. The difference in frequency limits arises from the difference in the spectral distribution of the unpolarized power; the difference in system noise temperature arises from the signal processing used to separate these quantities (cf Subtask 4, 5). The value of \tilde{n} is chosen in a manner similar to that of n in item 37. In some cases, it is not clear that all the unpolarized power is contained in the receiver passband. In this event, \tilde{B}_1 or \tilde{B}_2 is set equal to the upper or lower frequency limit as appropriate.

40. Normalized Unpolarized Power - is the analogous quantity to item 39, for the unpolarized power spectrum. The normalized unpolarized power is defined as

Normalized Unpolarized Power = U/n

where the symbols have the same meaning as in item 39. Comments given under item 38 are also germaine to normalized unpolarized power.

#1. Equivalent Area Bandwidth - the spectrum of a bistatic-radar echo from a well behaved surface may be written as (Fjeldbo, 1964).

$$S(f) = e^{-\pi f^2 \left[\frac{h_o}{v_s} (\pi/\lambda) \cos \phi \left(\frac{h_o}{d_o} \right) \right]^{-2}} = e^{-f^2/2\tilde{o}^2}$$

where

f = frequency measured from the centroid of the echo spectrum

v = speed of the specular point across the mean lunar surface

 λ = wavelength

angle of incidence, and

h /d = rms slope

The three machine calculated bandwidths, i.e., the equivalent area bandwidth, the absolute moment bandwidth, and the second moment bandwidth, provide three quasi-independent methods of determining the spectral width of the received echoes. The equivalent area bandwidth provides a standard result that is not particularly sensitive to the gaussian, or non-gaussian nature of the echo spectrum. The absolute moment bandwidth and the second moment bandwidth so emphasize departures from gaussian because of the increasing importance given to the wings of the spectrum.

Equivalent area bandwidths have been used to determine lunar rms slopes. The absolute mement bandwidths and the second moment bandwidths, when normalized by the equivalent area bandwidth, give a sensitive measure of the departures of the echo spectra from the gaussian conditions. RMS slopes derived from these measures are termed "gaussian equivalent slopes" in that they would correspond to true surface conditions for a surface with gaussian statistics and a gaussian autocorrelation function with the same equivalent widths. A more complete description of the lunar slopes requires additional analysis (e.g., see Parker and Tyler, 1973).

Solving for rms slope in terms of measured values of standard deviation, $\hat{\sigma}_{r}$, of an experimental spectrum yields

$$h_o/d_o = \frac{\hat{\sigma}}{2(v_s/\lambda) \cos \phi}$$

Thus, the rms slope may be readily determined from a experimental curve in terms of the e^{-1} width of that curve. The equivalent area bandwidth is a measure of $\hat{\sigma}$ based on an equivalent rectangular spectrum of the same area as the experimental spectrum. This width is computed as

$$\hat{\sigma}_{ea} = \frac{c_1}{\max_{p_p(k)}} \cdot (2\pi)^{-1/2}$$

$$c_1 < k < c_2$$

Referring to the figure which follows, the quantity $\hat{\sigma}_{ea} = \sigma$ if the observed curve is gaussian and noiseless. For non-gaussian data $\hat{\sigma}_{ea}$ is still a measure of the bandwidth, albeit the interpretation must be modified. rms slopes determined from $\hat{\sigma}_{ea}$ and expression

above will be referred to as equivalent area slopes. The quantity $\hat{\sigma}_{ea}$ is the equivalent area bandwidth.

42. Normalized Absolute Moment Bandwidths - are based on an equivalent value of ô computed from the absolute moment of the data. That is,

$$\hat{\sigma}_{am} = \frac{\sum_{k=C_1}^{2} P_p(k) |k-\bar{k}|}{\sum_{c_2}^{C_2} P_p(k)} \cdot \sqrt{\frac{\pi}{2}}; \quad \bar{k} = \frac{\sum_{k=C_1}^{2} P_p(k) |k|}{\sum_{k=C_1}^{C_2} P_p(k)}$$

for a gaussian spectrum the equivalent area moments and the absolute moments will be equal

$$\hat{\sigma}_{am} = \hat{\sigma}_{ea} = \sigma$$

where the symbols have the same meaning as in item 41.

The normalized absolute moment bandwidth is

$$\hat{\sigma}_{am}/\hat{\sigma}_{ea}$$

For a gaussian echo spectrum this ratio will be unity.

43. Normalized Second Moment Bandwidth - the second moment bandwidth is also based on gaussian equivalence. This bandwidth is defined as

$$\hat{\sigma}_{sm} = \frac{\sum_{k=C_1}^{C_2} p_p(k) (k-\bar{k})^2}{\sum_{k=C_1}^{C_2} p_p(k)}; \quad \bar{k} = \frac{\sum_{k=C_1}^{C_2} p_p(k) \cdot k}{\sum_{k=C_1}^{C_2} p_p(k)}$$

Again, for a gaussian echo spectrum

$$\hat{\sigma}_{sm} = \hat{\sigma}_{am} = \hat{\sigma}_{ea} = \sigma$$

where the symbols have the same meaning under items 42 and 41.

The normalized second moment bandwidth is given by

$$\hat{\sigma}_{\rm sm}/\hat{\sigma}_{\rm ea}$$

Again, departures of this ratio from unity are indicative of a non-gaussian received echo spectrum

44. Centroid of the Echo Spectrum - the centroid of the echo spectra are defined in the standard way .

$$\bar{k} = \frac{\sum_{k=C_1}^{C_2} P_p(k) \cdot k}{\sum_{k=C_1}^{C_2} P_p(k)}$$

where the symbols have the same meaning as in 41, 42 and 43. The values of C_1 , C_2 are held constant throughout items 41, 42, 43 and 44. The echo spectrum centroid is used in the computations of the absolute moment bandwidths and the second moment bandwidths. It is also useful for estimation of the observed doppler difference (cf item 31). However, the centroid has no direct meaning in an

absolute sense in that the transmitter frequencies from the spacecraft are not known precisely.

45. rms Slopes - are obtained from the equivalent area bandwidths according to

$$\frac{h_o}{d_o} = \frac{\hat{\sigma}_{ea}}{2(v_s/\lambda) \cos \phi}$$

and

rms slope =
$$tan^{-1} (h_o/d_o)$$

where the results are expressed in degrees for convenience. The quantities v_s , λ , ϕ and $\hat{\sigma}_{ea}$ have been defined in item 41.

Handscaled 1/2 Power Echo Bandwidths - handscaling of polarized echo bandwidths has been discussed previously under Subtask 10.

A 1/2 power echo bandwidth is defined by the quantity "B" in the figure which follows. In practice, this value is obtained by handscaling data from plots. The handscale bandwidths provide a rapid, simple technique for the evaluation of lunar rms surface slopes. The handscaled bandwidths were also used as a controlling parameter in development of automated techniques for obtaining echo bandwidths. rms slopes may be obtained from the handscaled bandwidths by

rms slope = 5.7° x B/(predicted 1/2 power bandwidth for 0.1 rms slopes)

As before, in item 45, the result is given in degrees for convenience. Predicted 1/2 power bandwidths for 0.1 rms slopes are given in Word No. 30 of the integral tape data records (cf item 30).

47. Flag - the flag word contains a seven level binary code that indicates data quality. A bit in the "l" condition indicates the existance of a special condition in the data. A bit position in the "O" state carries no meaning other than that the data are normal.

The interpretation of the bit positions is as given below.

Bit in "1" Condition	Implication
1	Polarized power data questionable or no good
2	Unpolarized power data questionable or no good
3	Polarized noise level, n, (cf item 37) changed this data record
14	Polarized integration bounds B ₁ , B ₃ , (cf item 37) changed this data record
5	Unpolarized noise level, n, (cf item 39) changed this data record
6	Unpolarized integration bounds, \tilde{B}_1 , \tilde{B}_2 , (cf item 39) changed this data record
7	System gain changed this data record

Just tree for ",

Explanation

Bit Position "l"

Polarized data may be flagged for any one of a number of reasons. The presence of interference, an error in setting the integration bounds, or a tape drive error in the data processing are examples of difficulties that would result in such a flag. In case of gross errors the flag represents an objectively known bad data point. In the case of more subtle phenomena such as interference, the flag represents an experimenters subjective opinion. For the 116 cm data interference is the predominant cause of a data bad flags. Data users who wish to examine this question for themselves may do so by reprocessing the data from the JM Doptrack tapes, however, it is very strongly recommended that no flagged data be used without taking this precaution.

Bit Position "2"

Unpolarized data may be flagged for the same reasons as those given for the polarized data under bit position "l" above. However, because gross errors for polarized and unpolarized data may be independent, and because the unpolarized data possess a certain immunity to interference, which tends to be polarized, the flags in bit position "l" and "2" are not necessarily coincident. As before, in the case of interference, the investigator's judgment is involved.

Bit Position "3"

This flag is set when the noise level, i.e., n in item 37 is changed during the data reduction process. This flag serves to alert the user that such a change has been made. Any discontinuity that occurs when this bit is set is likely to result from this cause. In the case of the polarized power such discontinuities are generally quite small, on the order of 1%. However, in the case of the normalized polarized power such discontinuities may be large, on the order of two. Obviously, no physical significance should be attached to such discontinuities.

Bit Position "4"

Changes in the integration bounds are flagged for reasons similar to those given under bit position "3". The bounds, B₁, B₂, vary with the changing width and location of the polarized echo. Usually, such changes are very small and their effect is not noticable in the data.

Bit Position "5"

Changes in the unpolarized noise level, n, are made for the same reasons as those described under bit position "3". As before, changes in the unpolarized power, and especially the normalized unpolarized power, that occur with these changes in n are non-physical.

Bit Position "6"

The comments that apply to the polarized integration bounds given under bit position "4" also apply here.

Bit Position "7"

System gain changes may occur during data reception in the receiving systems or during data playback in the record reproduction system. Such changes are flagged since they will appear as a change in the polarized and unpolarized signal levels. Gain changes do not affect measures of echo bandwidths.

48. Antenna Gain - is the gain of the spacecraft antenna in the as, bs direction determined from the needs completing

Ilhere is 49?

Stanford Apollo Bistatic-Radar Experiment (S-170):

National Space Science Data Center Data Description

G. L. Tyler

H. T. Howard

G. R. Dow

February 15, 1973

Technical Report No. 3282-1

Prepared under

National Aeronautics and Space Administration Contract NAS 9-10579

CENTER FOR RADAR ASTRONOMY RADIOSCIENCE LABORATORY

STARFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY . STANFORD, CALIFORNIA

STANFORD APOLLO BISTATIC-RADAR EXPERIMENT (S-170): NATIONAL SPACE SCIENCE DATA CENTER DATA DESCRIPTION

February 15, 1973

G. L. Tyler

H. T. Howard

G. R. Dow

Technical Report No. 3282-1

Prepared under

National Aeronautics and Space Administration Contract NAS 9-10579

> Center for Radar Astronomy Stanford University Stanford, California 94305

Contents

Introduction
Synopsis of Observations
Data Collection, Processing, Reduction
Subtask 1 Data Collection
Subtask 2 Sampling
Subtask 3 Conversion to Frequency Domain
Subtask 4 Generation of Coherency Matrix
Subtask 5 Correction for System Polarization Parameters 16
Subtask 6 Merging Observations with Trajectory
Subtask 7 Computation of Polarized and Unpolarized Parts, Carrier Suppression
Subtask 8 Computation of Total Received Power, Echo Moments
Subtask 9 Final Editing of Data
Subtask 10 Displaying, Scaling, and Copying the Data 28
Subtask 11 Utility Routines
Appendix I VHF Receiver
Appendix II S-Band Receiver
Appendix III Apollo Bistatic-Radar Receiving System 116 cm Uncorrected Frequency Response
Apollo Bistatic-Radar Receiving System 13 cm Uncorrected Frequency Response
Appendix IV JM Doptrack Tape Format
Appendix V Carrier Suppression Algorithm
Appendix VI Integral Tape Format

Appendix VII	
Cross-Reference Table for JM Doptrack/Integral Tape	
Trajectory Parameters	52
Appendix VIII Matrix Correction Factors	54
Appendix IX Coordinate Transformations	56
Appendix X Relationship Between the Coherency Matrix and Other Specifications of Polarization	7.3
Appendix XI	77
	79
Notes	31

Introduction

The Stanford Apollo Bistatic-Radar Experiment (S-170) was carried out during the lunar orbit phase of the Apollo 14, 15, and 16 flights. The experiment was unique in that no special equipment was placed onboard the Apollo vehicles and carried to the moon, and that the principal observations were carried out on the ground. Radio-frequency transmissions from the orbiting command-service-module were directed toward the moon and received on the earth after reflection from the lunar surface. Two wavelengths, 13 cm (2287.5 MHz, S-band) and 116 cm (259.7 MHz, VHF), were used. The best data were obtained during periods when the spacecraft was maneuvered to maintain a predetermined, although changing, attitude with respect to the earth and moon. During these periods, data were obtained at the two wavelengths simultaneously. Data were also obtained at the 116 cm wavelength during periods of inertial hold and SIM bay attitude maneuvers. Data reception took place at two sites on the earth, the NASA-DSN 64 m antenna facility located near Barstow, California and the Stanford Research Institute/ Stanford University 46 m antenna facility located on the campus of Stanford University, Stanford, California. The NASA facility was used for reception of the 13 cm data, the Stanford facility for the 116 cm data. In both cases the elements of the receiving system critical to the experimental objectives were under direct control of the experimenters. At the DSN, a Signal Conditioning Unit designed and constructed at Stanford was inserted as a critical series element in the data receiving system and used to set system bandwidths, levels and timing information for the analog recording system. Input signal levels, bandwidths, and

and monitored in real-time during data collection by the experimenters.

Data reduction was carried out at the Stanford Sigma 5 Real-Time Computation Facility. With two exceptions (cf. Notes on Block Diagram I, 4d, and Appendix V) identical programs and procedures were used for 13 cm and 116 cm data. Also, with one exception, the same programs were used for all three flights (cf. Subtask 2). However, certain parameters, defined elsewhere in the report, were varied for data at the two wavelengths.

Good data were obtained from the three flights. In the data sets accompanying this report we include the simultaneous 13 cm and 116 cm observations, but not the 116 cm data obtained in the inertial hold and SIM bay attitudes. Data are given in two forms:

- a) A complete set of observations reduced to short time averages of the electromagnetic wave spectra for the 13 cm and 116 cm observations. These observations have been corrected for instrumental effects, and are unedited. Tapes containing these data are referred to as JM Doptrack tapes. The observations have been merged with trajectory data obtained from the Manned Space Flight Center in Houston, and certain ancillary data computed from the trajectory.
- b) A complete set of reduced data records, called <u>Integral</u> tapes, obtained from the <u>JM Doptrack</u> tapes, which describe certain properties of the <u>JM Doptrack</u> data, such as moments of the echo spectra, and inferred properties of the lunar surface, such as rms slopes.

There is one-to-one correspondence between the Integral data and the JM Doptrack data; an interested investigator may use either the reduced data records given on the Integral tapes, or use the JM Doptrack tapes to verify the reduction procedure and perform additional reductions.

The remainder of this report describes the data collection and reduction system in some detail, attempts to give cautioning notes to

the data user, and describes the tape contents and formats for JM Doptrack and Integral tapes. However, no particular attempt to explain the motivation for the overall data reduction procedures will be made, except as it affects individual steps not described elsewhere. A more general understanding of the experiment, its goals, limitations, and preliminary results may be obtained from the references listed below:

- Howard, H. T. and G. L. Tyler, 'Bistatic-Radar Studies of the Lunar Surface," Apollo 14 Preliminary Science Report, NASA publication SP-272, 1971.
- Howard, H. T. and G. L. Tyler, "Bistatic-Radar Investigation,"

 Apollo 15 Preliminary Science Report, NASA publication SP-289,
 p. 23-1, 1972.
- Howard, H. T. and G. L. Tyler, Apollo 16 Preliminary Science Report, NASA publication SP-315, p. 25-1, November, 1972.
- Tyler, G. L. and H. T. Howard, "Bistatic Radar Observations of the Lunar Surface with Apollos 14 and 15," paper presented at Third Lunar Science Conference, Houston, Texas, January, 1972.
- Tyler, G. L. and D. H. H. Ingalls, "Functional Dependence of Bistatic Radar Frequency Spectra on Lunar Scattering Laws," J. Geophys. Res., Vol. 76, No. 20, pp. 4775-4785, July, 1971.

Synopsis of Observations

A synopsis of the observations included with this report is given in Table I, "Stanford Apollo Bistatic-Radar Experiment Parameters." The definitions of the columns in Table I are given below:

SPACECRAFT - Designation of flight number

ORBIT - NASA-MSC orbit numbers, counted from lunar orbit insertion

WAVELENGTH - Either 13 cm or 116 cm, wavelength of electromagnetic radiation from command-service-module, corresponds to frequencies 2287.5 MHz and 259.7 MHz respectively.

ANTENNA - Command-service-module antenna in use. Quantities in () are NASA-MSC designation. Antenna patterns used in data reduction obtained from NAA (1966a, 1966b, 1969), and MSC (1967). Apollo 14 experiment required compromise in spacecraft attitude to accomodate patterns from two fixed antennas.

3 db BEAMWIDTH - One-half power antenna beamwidths

POLARIZATION - Of cormand-service-module antenna

GAIN - Command-service-module antenna gain

POWER - Transmitted power, from command-service-module

SYSTEM TEMPERATURE - Equivalent temperature of receiving system on the earth, looking at cosmic background radiation perpendicular to plane of galaxy.

TABLE I
Stanford Apollo Bist:tic-Radar Experiment Parameters

Stanford Apollo Bistatic-Radar Experiment Parameters SYSTEM							SYSTEM	
SPACECRAFT	ORBIT	WAVELENGTH	ANTENNA	3 db BEAMWIDTH	POLARIZATION	GAINB	$POWER^{\vee}$	TEMPERATURE 6
Apollo 14	25	13 cm	Cavity backed helix (OMNI C)	~ ₆₀ °	Right elliptical axial ratio ~7 db	-1.5 db	~1, W	27°K ± 3°
Apollo 14	25	116 cm	Scimitar (VHF <u>LEFT</u>)	γ	Linear, maintained in plane of incidence	~O db	~2.5 W	~1000°K ± 50°
Apollo 15	28	13 cm	Steerable crossed dipoles (HIGH GAIN, WIDE)	~400	Right circular axial ratio ~1.0 d	-1.5 db b	i ₊ w	27°K ± 3°
Apollo 15	28	116 cm	Scimitar (VHF <u>RIGHT</u>)	α	Linear, varies with respect to plane of incidence	~O db	~2.5 W	~1000°K ± 50°
Apollo 16	40	13 cm	Steerable crossed dipoles (HIGH GAIN, WIDE)	~40°	Right circular axial ratio ≈1.0 d	-1.5 db	~ 1, W	27°K ± 3°
Apollo 16	40	116 cm	Scimitar (VHF <u>LEFT</u>)	α	Linear, maintained in plane of incidence	~O db	~2.5 W	~1000°K ± 50°

beamwidth of scimitar not defined

 $[\]beta$ includes circuit losses, nominal values \pm 3 db

γ in carrier signal, nominal values, actual values not measured in flight

[&]amp; varies with orbital position of spacecraft, cold sky values given

Data Collection, Processing, Reduction

Block Diagram I, located at the rear of the report, depicts the flow of data through collection, processing, and reduction. Annotations and totes (circled numbers) give brief comments or descriptive titles as guides for reference. The overall data flow is divided into 11 subtasks, indicated by horizontal brackets. The remainder of the report is subdivided according to the subtasks. It is assumed that the reader has general familiarity with analog-to-digital and digital techniques for data reduction and analysis. Critical data reduction parameters are given in Table II and antenna parameters are given in Tables III and IV.

Each subtask description provides a general explanation of that subtask function. An attempt has been made to maintain independent description, with minimum reference to other functions. Highly technical details, such as magnetic tape formats and coordinate descriptions, are reserved for the appendixes. In this way a careful reading of the subtask descriptions, in connection with Block Diagram I, should provide a good overview of the data reduction process. The appendixes may be read at a later time, or for details.

A THOROUGH STUDY OF BLOCK DIAGRAM I PRIOR TO THE USE OF REPOSITORY DATA IS VERY HIGHLY RECOMMENDED.

TABLE II
STANFORD APOLLO DUAL-FREQUENCY BÍSTATIC-RADAR DAYA SUMMARY

STANFORD APOLLO DUAL-FREQUENCY BİSTATIC-RADAR DAYA SUMMARY						
APOLLO 16		APOLLO 15		APOLLO 14		
(13 cm (S-BAND)	116 cm (VHF)	13 cm (S-BAND)	116 cm (VHF)	
13 cm (S-BAND)	116 cm (VHP)	1164.5		988.		Julian Ephemeris Day (OO:OO UT2 Preceding Data)
17.752	244	2441317.752		952.509	2440	Reference Epoch for Coordinate Systems
, 1972	April :	t 1, 1971	Angus	6, 1971	February	CALENDAR DATE
40		28		25		Orbit Number (From Lunar Orbit Insertion)
2287.5 MHz	259.7 MHz	2287.5 MHz	259.7 MHz	2207.5 MHz	259.7 MHz	Transmitter Frequency
01:17:00/02:27:05	01:16:30/02:16:26	01:16:30/02:29:00	01:23:00/02:23:58	06:38:30/07:32:28	06:37:17/07:30:34	UT2 START/STOP TIME
HIGH GAIN (WIDE)	VHF LEFT	HIGH GAIN (WIDE)	VHF RIGHT	OMENTI C	".F LEFT	Spacecraft Antenna (MSC Designation) High Gsin Antenna Pointing Angles
145.° 302.°	-	144.0		-	-	α
DSN/STANFORD Closed Loop revr	Stai.ford 10,003 MHz i.f. revr	DSN/STAMFORD Closed Loop rove	Stanford 10,003 MHz 1,f.rcvr	DSN/STANFORD Closed Loop rcvr	Stanford 10,003 MHz 1,f.rcvr	Data Source
~20.0 kHz	~3.5 kHz	~20.0 kHz	~3.5 kHz	~20.0 kHz	~3.5 kHz	Receiver Bandwidth
1,3.0 kHs	10,0 kHz	43.0 kHz	10.0 kHz	43.0 kHz	10.0 kHz	Data Sampling Frequency
21.5 kHz	5.0 kHz	21.5 kHz	5.0 kHs	21.5 kHz	5.0 kHz	Total Analysis Band- width
1024	2048	1024	20.	1024	1024	N, F mber of Analysis Bin_
42.0 Hz	4.9 Hs	42.0 Hz	4.9 Hz	42.0 Hz	9.8 Hz	Analysis Resolution
0.02381395 sec.	0.2046 sec.	0.02381395 нес.	0.2048 fec.	0.02381395 sec.	0.1024 sec.	Length of Data Window/Transform
99 2.357581 sec.	23 h.710h sec.	99 2,357581 sec.	23 4.7104 & ec.	100 2.351395 sec.	26 2,6624 sec.	L, Number of Transforms Averaged per JM Record (se∝ Subtask ¼) Frame Length
1	10.003 MHz 1.f. revr -3.5 kHz 10.0 kHz 5.0 kHz 2048 4.9 Hz 0.2046 sec.	122.0 DSN/STAMPORD Closed Loop revr ~20.0 kHz 43.0 kHz 21.5 kHz 1024 42.0 Hz 0.02381395 sec.	10.003 MHz 1.f. revr ~3.5 kHz 10.0 kHz 5.0 kHz 2011 4.9 Hz 0.2048 fee.	Closed Loop rcvr -20.0 kHz 43.0 kHz 21.5 kHz 1024 42.0 Hz 0.02381395 sec.	10.003 MHz 1.f.rcvr -3.5 kHz 10.0 kHz 5.0 kHz 1024 9.8 Hz 0.1024 sec.	B Data Source Receiver bandwidth Data Sampling Frequency Total Analysis Bandwidth N, Fember of Analysis Bin_ Analysis Resolution Length of Data Window/Transform L, Number of Transforms Averaged per JM Record (see Subtask 4)

TABLE III

Stanford Research Institute $46~\mathrm{m}$ Antenna Performance (116 cm)

Aperture	Efficiency	Feed System	Mount	Pointing Loss
46 m dia.	~35% ±5%	Crossed dipole array axial ratio ~1. db \pm 0.5 isolation ~16 db \pm 1.0	el/az	< 0.1 db

TABLE IV

NASA DSN 64 m Antenna Performance (13 cm) *

Aperture	Efficiency	Feed System	Mount	Pointing Loss
64 m dia.	58% ±4%	Waveguide horn axial ratios ≈ 0.8 db β isolation ≈ 26 db γ	el/az	< 0.03 db

 $[\]alpha$ estimated

 $[\]beta$ Private communication, D. Bathker, JPL, 1973.

^{*} DSN, 1972

Data Collection

- a) 116 cm. A detailed block diagram of the 116 cm receiver is given in Appendix I. The receiver is a superheterodyne of standard design. An unusual feature of this system is the summed second local oscillator signal used to produce offset 9.0 and $10.003 \, \mathrm{MHz}$ intermediate frequency signals. In operation, the 10.003 MHz channel was tuned to the downlink signal carrier and its accompanying echo, while the 9.0 MHz channel was tuned to the subcarrier signal displaced + 31.6 KHz from the 259.7 MHz carrier. This procedure was adopted to provide frequency dispersive redundancy against locally generated interference at the main carrier frequency. The receiver passband characteristics are given in Appendix III. However, all data given here were obtained through the main 10 MHz channel. Receiver outputs were multiplexed with standard frequency references and clock signals and recorded on analog tape. Parameters of the Stanford Research Institute 46 m dish are given in Table III.
- (b) 13 cm. A detailed block diagram of the 64 m 13 cm receiving system is given in Appendix II. Again, standard superheterodyne techniques are employed. All 13 cm data were obtained from a phase-locked loop signal tracking system using manual tracking when the direct signal dropped below threshold of the phase-locked loop. The receiver passband characteristics are given in Appendix III. The NASA-DSN station configuration for this experiment is given elsewhere (DSN, 1970, 1971). Again, analog signals from the receiver output multiplexed with clock and reference frequencies were recorded. Parameters of the NASA DSN 64 m dish are given in Table IV.

Subtask 1 (cont.)

(c) Critical Bandwidths. Appendix III gives the power spectral densities obtained at the receiver outputs for the three Apollo experiments with uniform power spectrum (white) noise input. These curves were obtained in Subtask 4, and were used in the data normalization. For the 116 cm system additional checks made with coherent signals within ± 5 MHz either side of the 10 MHz intermediate frequency and within ± 20 MHz of the first intermediate frequency verified the absence of spurious responses that would not be detected by the noise calibration technique. Similar tests have been carried out by the DSN and the experimenters at the 64 m facility. Thus, the curves in Appendix III accurately represent the receiver response to signals near the frequency to which the receivers were tuned. Image rejection in the 116 cm system was greater than 100 db.

Sampling

Data sampling was carried out using standard techniques on the Stanford Sigma 5 Real-Time Computation Facility. Right circular and left circular polarization signal channels were sampled simultaneously in synchronism with the multiplexed time reference signals. Sampling was initiated at the start of an even 10 sec. interval (UT2) by a start pulse derived from the recorded time code. The sampling programs were improved between the Apollo 15 and 16 experiments to obtain higher playback rates for the 13 cm data (see Block Diagram I, Notes, 4d). With this exception, the same computer programs were used for data reduction from the three sets of observations. A small overlap was provided between subsequent sample data tapes. These overlaps were carried through the remainder of the data processing. Tape recorder playback levels were adjusted for equality between left circular and right circular polarization using the controlled reference signal levels for calibration. The playback recorder electronics were equalized for the particular tape source (FR1400 A, FR1400 B, HP3955B) prior to sampling data from that source. Output from the data sampling process was stored on magnetic tape. The quantization level was 8 bits. The ith data sample generally will be denoted $\hat{\mathbf{d}}_{i}$: data from the left circularly polarized antenna \hat{d}_i , data from the right circularly polarized antenna d.

Conversion to Frequency Domain

All data have been rendered in the frequency domain in the form of modified complex Fourier coefficients (Blackman and Tukey, 1958). A sequence of data samples was multiplicatively weighted with a sine-squared (Hanning) data window and then Fourier analyzed using fast Fourier transform techniques. Analytically, the data samples were grouped, separately for each polarization, according to

$$d_{j}^{n} = \hat{d}_{i}, \qquad (1)$$

where i = nN + j, $j \le N$; n,N,j positive integers or zero. The modified complex Fourier coefficients are

$$f_{k}^{n} = \sum_{j=0}^{N-1} \sin^{2}\left(\frac{2\pi}{N} j + \frac{\pi}{N}\right) d_{j}^{n} = i(2\pi/N)jk, \qquad (2)$$

where i = $\sqrt{-1}$, $0 \le k \le N-1$. In the Apollo data reduction programs, N was either 1024 or 2048 (see Table II). Each set of coefficients corresponds to a time interval $T = N \cdot (\text{sampling interval})$ (see Table II for values). The outputs of the transformation are the f_k^n above.

Generation of Coherency Matrix

The coherency matrix (Born and Wolf, 1959) was determined directly from the f_k^n by forming the summed products

$$\begin{bmatrix} \mathbf{L} & \mathbf{L}$$

where * denotes complex conjugate. Each sum is a function of the frequency index k. In order to compensate for the non-uniform effects of the receiving system filters, we further form

where $q_k^n = f_k^n$ for periods with signal absent. The \hat{q}_k^2 are the receiving system output power spectra for a noise input. The upper bound M was chosen to reduce the fluctuations in \hat{q}_k^2 to a small value. Typically M < 10 4 , for which \hat{q}_k^2 is determined to approximately one percent. The coherency matrix, corrected for receiver power transfer characteristics is

$$\underline{\mathbf{J}}_{\mathbf{k}} = \begin{bmatrix} \mathbf{J}_{11} & \mathbf{J}_{12} \\ \mathbf{J}_{21} & \mathbf{J}_{22} \end{bmatrix}, \tag{5}$$

Subtask 4 (cont.)

where

$$J_{11} = \frac{1}{1^{\hat{q}}_{k}^{2}} \sum_{n=1}^{L} |_{1} f_{k}^{n}|^{2}$$

$$J_{22} = \frac{1}{2^{\hat{q}}_{k}^{2}} \sum_{n=1}^{L} |_{2} f_{k}^{n}|^{2}$$

$$J_{12} = \frac{1}{1^{\hat{q}}_{k} 2^{\hat{q}}_{k}} \sum_{n=1}^{L} |_{1} f_{k}^{n} 2^{f_{k}^{n \times k}}$$
(6)

$$\tilde{J}_{21} = \tilde{J}_{12}^*$$
.

The fractional polarization of the received signal may be computed directly from the \underline{J}_k as

$$\gamma_{k} = \left\{ 1 - \frac{\frac{4 \text{ Det } \underline{J}_{k}}{\text{Trace}^{2} \underline{J}_{k}}}{\right\}.$$
 (7)

Again γ_k is a function of the frequency index k. The output of Subtask 4 consists of the spectra \underline{J}_k , γ_k . The parameters L and N used in the reduction of the several sets of observations are included in Table II. Completion of the \underline{J}_k (Subtasks 2, 3, and 4) represented the greatest portion of the computational expense for this experiment. Additional results may be obtained directly from \underline{J}_k and γ_k . For example, the power in the polarized and unpolarized parts of the echo is:

Subtask 4 (cont.)

polarized power
$$P_{p}(k) = \gamma_{k} \cdot \text{Trace } \underline{J}_{k}$$
 unpolarized power
$$P_{u}(k) = (1-\gamma_{k}) \cdot \text{Trace } \underline{J}_{k} \cdot$$

Other parameters of the echo spectra may be obtained similarly (Born and Wolf, 1959; Appendix 10).

Correction for System Polarization Parameters

The quantities $\underline{\mathbf{J}}_{\mathbf{k}}$ and ${}^{\mathrm{V}}{}_{\mathbf{k}}$ discussed in the previous section under Subtask were derived directly from the sample data as they came from the analog tapes. As discussed under Subtask 4 certain corrections have been made for the receiver filter characteristics. However, the data were treated as though they were derived from perfect antennas. That is, the antennas were assumed to consist of a pair of right and left circularly polarized elements. It was further assumed that, with the exception of the filter corrections already applied, the gains in the two receiver channels were equal. In the case of the 13 centimeter data this assumption was very good. The isolation of the DSN 64 m antenna has been measured as > 26 db with an axial ratio of < 0.8 db (private communication, D. Bathker, JPL, 1973). At 116 cm the properties of the SRI 46 m antenna are not nearly so well known. Polarization of the 46 m antenna was controlled principally through the constraints applied to the construction of the feed system. The feed system consisted of a crossed dipole array of linear elements connected through a standard hybrid to obtain a circular polarization. The array elements were mechanically and electrically identical. The hybrid combiner and associated phase shift elements were adjusted to within 1° and 1 db of the ideal transfer function for such a device. Coupling between the orthogonal linear array elements was less than 40 db with the feed removed from the dish. Cross-coupling between the two circular polarizations, observed at the hybrid output with the feed in place at the focus of the dish, was 16 db. We were unable to measure the axial ratio of the overall system with the teed in place in the dish. We estimate axial ratio of the 116 cm system as approximately 1 db for either polarization. For certain received polarizations axial ratios

Subtask (cont.)

of this magnitude can introduce significant errors in the calculation of fractional polarization. Consequently, a correction for this uncertainty was applied in Subtask 5. This correction was applied to the 116 cm Apollo 14 and 16 data only. The output tapes from Subtask 5 preserve the original \underline{J}_k computed earlier.

The corrections were determined as follows (cf $\underline{\text{Tyler}}$, 1970). Consider the signals arriving at the antenna terminals in terms of their right and left circularly polarized components, which we will denote $\mathbf{E_r}$, $\mathbf{E_l}$, respectively. The relationship between the arriving signals and the signals at the antenna terminals may be expressed as a matrix multiplication

$$\begin{bmatrix} \mathbf{E}_{\mathbf{r}} \\ \mathbf{E}_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{11} & \mathbf{c}_{12} \\ \mathbf{c}_{21} & \mathbf{c}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{E}_{\mathbf{r}} \\ \mathbf{E}_{1} \end{bmatrix}$$
(9)

where the c*s are complex and arbitrary. The matrix elements may be thought of as the transmission coefficients of the four port network consisting of pairs of antenna elements and terminals. Physically, the c*s may represent attenuation, gain, and cross-coupling. In an ideal system $c_{11} = 1$, $c_{12} = c_{21} = 0$, $c_{22} = 1$.

Subtask (cont.)

The effect of such a transformation on the coherency matrix \underline{J} is easily shown to be

$$\mathbf{J}_{11}^{\dagger} \quad \mathbf{J}_{12}^{\dagger} \quad \mathbf{c}_{11}^{\dagger} = \begin{bmatrix} |\mathbf{c}_{11}|^{2} & \mathbf{c}_{11}^{\dagger} \mathbf{c}_{12}^{\dagger} & \mathbf{c}_{11}^{\dagger} \mathbf{c}_{12} & |\mathbf{c}_{12}|^{2} \end{bmatrix} \begin{bmatrix} \mathbf{J}_{11} \\ \mathbf{J}_{12} \\ \mathbf{J}_{21}^{\dagger} \end{bmatrix} = \begin{bmatrix} |\mathbf{c}_{11}|^{2} & \mathbf{c}_{11}^{\dagger} \mathbf{c}_{12}^{\dagger} & \mathbf{c}_{12}^{\dagger} \mathbf{c}_{21}^{\dagger} & \mathbf{c}_{22}^{\dagger} \mathbf{c}_{12} \\ \mathbf{c}_{11}^{\dagger} \mathbf{c}_{21} & \mathbf{c}_{21}^{\dagger} \mathbf{c}_{12}^{\dagger} & \mathbf{c}_{22}^{\dagger} \mathbf{c}_{11}^{\dagger} & \mathbf{c}_{22}^{\dagger} \mathbf{c}_{12}^{\dagger} \end{bmatrix} \begin{bmatrix} \mathbf{J}_{11} \\ \mathbf{J}_{12} \\ \mathbf{J}_{21} \end{bmatrix}$$

$$\mathbf{J}_{21}^{\dagger} \quad \mathbf{J}_{21}^{\dagger} \quad \mathbf{J}_{21}^{\dagger} \quad \mathbf{J}_{21}^{\dagger}$$

$$\mathbf{J}_{22}^{\dagger} \quad \mathbf{J}_{22}^{\dagger} \quad \mathbf{J}_{22}^{\dagger} \quad \mathbf{J}_{22}^{\dagger}$$

where \underline{J}^{\dagger} is the coherency matrix of the wave associated with \underline{J} observed at the antenna terminals. The k subscripts I we been suppressed for convenience. However, it is assumed that the c's are independent of frequency over the spectrum of interest. Given \underline{J}^{\dagger} and the c's, the original \underline{J} may be recovered through an inverse matrix manipulation. In the present case \underline{J}^{\dagger} is observed, but the c's are unknown.

The c's may be estimated from an observation of an unpolarized signal (Tyler, 1970). System noise inputs to the 116 cm receiver system were used to estimate the c's and perform a correction. The method was based on an experimenter selection of these portions of the receiver output spectrum that contained only receiver noise. If it is assumed that the noise input is unpolarized, then

$$J_{11}^{\dagger} = (|c_{11}|^{2} + |c_{12}|)^{2} J_{o}$$

$$J_{12}^{\dagger} = (c_{11}c_{21}^{*} + c_{22}^{*}c_{12}) J_{o}$$

$$J_{21}^{\dagger} = J_{12}^{\dagger *}$$

$$J_{22}^{\dagger} = (|c_{21}|^{2} + |c_{22}|^{2}) J_{o},$$
(11)

Subtask 5 (cont.)

where

$$J_o = k T_{sys}/2$$

 $k = 1.38 \times 10^{-23}$ (Joules/deg. Kelvin) (12)
 $T_{sys} = \text{system temperature.}$

The signal will appear unpolarized if

$$J_{12}' = 0$$
 and $J_{11} = J_{22}$

or

$$c_{11}c_{21}^* = -c_{22}^*c_{12} \tag{13}$$

and

$$|\mathbf{c}_{11}|^2 + |\mathbf{c}_{12}|^2 = |\mathbf{c}_{21}|^2 + |\mathbf{c}_{22}|^2$$
,

from which the required inverse transformation can be obtained. In practice, a numerical estimate of the correction matrix was obtained as described above. This estimate was then used as a starting point in a search to find the c's which minimized the apparent polarization of the corrected \underline{J}_k in the noise portions of the spectrum. The corrections in the form just described were then used to compute the corrected \underline{J}_k for the entire spectrum. A corrected fractional polarization γ_k based on \underline{J}_k was then obtained.

The output tapes from Subtask 5 contain the original \underline{J}_k and the new, corrected γ_k . A data user may easily recompute the original γ_k from the \underline{J}_k which have been preserved and which are available on the tapes supplied (see Subtask 6, Appendix IV). The correction factors employed in the generation of the γ_k are given in Appendix VIII.

Subtask 5 (cont.)

In summary, steps in this subtask are:

- a) Read $\underline{\mathbf{J}}_{\mathbf{k}}$ source tapes from Subtask 4
- b) Determine elements of the correction matrix based on minimization of the polarized part of the noise.
- c) Compute Yk.
- d) Generate new tape containing the original \underline{J}_k and new γ_k .

This process was applied to the Apollo 14 and 16 116 cm data: 13 cm data are uncorrected, i.e., for 13 cm data $\gamma_k^i = \gamma_k$. In subsequent steps the γ_k^i were used in all computations of the polarized and unpolarized parts of the 116 cm echo spectrum.

Merging Observations with Trajectory

The output of Subtask 5, the \underline{J}_k , γ_k tapes, represents the experimenter's best estimate of the received spectra, averaged over the time intervals previously defined: that is, a complete second order description of the received echo signal. In the present step this data, which was previously processed without regard to lunar coordinates or other geophysical considerations, was combined with the Apollo command-service-module ephemeris. The emphemeris was first interpolated to the mid-point of the averaging period used in the computation of the \underline{J}_k , then certain ancillary quantities were computed. The interpolated ephemeris and the derived quantities were then merged with the experimental data to form a basic set of source tapes designated JM Doptrack. After further processing in Subtask 10, these tapes became the primary source tapes supplied with this report to the MSSDC.

The ephemeris based quantities added to the observational data were:

- a) Time corresponding to mid-point of averaging period
- b) Predicted difference between reflected and direct doppler shifts
- c) Predicted echo bandwidth for a moon with rms slope of 0.1
- d) Angle of incidence on mean spherical moon
- e) Spacecraft altitude above mean spherical surface
- f) Speed of the spacecraft
- g) Bistatic-radar cross-section of a smooth, perfectly conducting, spherical moon for the current spacecraft-moon-earth geometry
- h) Normalized signal strength for a conducting moon and instantaneous geometry
- i) Spacecraft position in selenographic coordinates
- j) Specular point position on a mean spherical lunar surface in selenographic coordinates

Subtask 6 (cont.)

- k) Selenographic latitude and longitude of spacecraft position
- 1) Doppler shift due to rotation of the earth
- m) Total doppler shift of the reflected signal
- n) Selenographic latitude and longitude of specular point on the mean spherical lunar surface
- Speed of the specular point on the mean lunar surface
- p) Look angles to earth in spacecraft coordinates
- q) Euler angles of spacecraft attitude in local horizon system
- r) Selenographic unit velocity vector of spacecraft
- s) Selenographic unit vector location of earth.

These tapes are organized in groups of six data records, referred to as a data frame, corresponding to each time interval. A complete description of the JM Doptrack tape formats and contents is given in the appendixes (see Appendix IV).

Computation of Polarized and Unpolarized Parts, Carrier Suppression

JM Doptrack tapes contain spectrally analyzed 13 cm and 116 cm receiver outputs. No provision was made within the receivers or Subtasks 2, 3, 4, 5, or 6 for removal of the directly propagating telemetry carrier from the echo data. In terms of the polarization parameters, this signal cannot be removed completely. However, much of the data analysis is based only on the low order moments of the polarized part of the echo. Subtask 7 computed polarized and unpolarized spectra from relation (8), Subtask 4, then used an empirically derived algorithm to remove the carrier signal from the polarized spectra; these data together with the ephemeris data described in Subtask 6 constitute the intermediate data set generated by Subtask 7. The algorithm for carrier suppression is described in Appendix V. Carrier suppression was also applied to unpolarized data. However, the carrier was largely suppressed in those data by coherency matrix processing, since it was a polarized signal. The output of this subtask, the P tapes, contain the experimenter's best estimate of the power spectra of the polarized and unpolarized components of the echo signal.

Computation of Total Received Power, Echo Moments

Inputs to this subtask were the polarized and unpolarized power spectra derived from the JM Doptrack source tapes (Subtasks 6, 7). The purpose of Subtask 8 was to derive numerical measures of the echo spectra. Certain measures of the echo spectra were corrected for predictable trajectory effects and converted into scientific units. In all cases, the designation of the echo signal location in a spectrum was made by the experimenter's visually scanning plots of the polarized and unpolarized power spectra. The values of the k indices bounding the echo were input to a computer program that did the actual data reduction. An average noise level, determined from a region of the spectra not containing echo, was also input to the computer program. The data were monitored at approximately 30 sec. intervals and the echo limits reset to account for motion of the echo in the receiver passband. It was also necessary to occasionally reset the noise level as it also varied during the experiment, principally due to the scan of the receiving antenna across the lunar terminator. The derived quantities are given below:

- a) Polarized echo power -- the integral of the polarized power spectra between the frequency limits set by the experimenter and above the system noise level. This quantity is the best measure of the polarized echo power received.
- b) Normalized polarized echo power -- the quantity described in a) above, divided by the polarized system noise level.
- c) Unpolarized echo power -- the integral of the unpolarized power spectra between the frequency limits set by the experimenter and above the system noise level. This quantity is the best measure of the unpolarized echo power received.
- d) Normalized unpolarized echo power -- the quantity described in c) above, divided by the unpolarized system noise level.

Subtask 8 (cont.)

- e) Equivalent area bandwidth -- the bandwidth of the polarized echo signal between the frequency limits set by the experimenter and above the polarized system noise level as determined by the ratio of the rotal polarized echo power to the peak polarized echo power.
- f) Normalized absolute moment bandwidth -- the bandwidth of the polarized power echo as described in e) above, computed from a gaussian equivalent absolute moment, and divided by e).
- g) Normalized second moment bandwidth -- the bandwidth of the polarized power echo as described in e) above, computed from a gaussian equivalent second moment, and divided by e).
- h) Centroid of echo spectrum -- the centroid of the polarized power echo as described in e) above.
- i) RMS slope -- the rms slope of the lunar surface inferred from the value of e) above and the predicted bandwidth for an rms surface slope of 0.1, using linear interpolation.

Formulas for the computation of the above quantities and a brief explanation of their use may be found in Appendix VI. The trajectory data added in Subtask 6 were retained throughout this subtask. A simple correspondence between the output of this subtask and the JM Doptrack tapes was maintained through inclusion of ephemeris data in both data sets.

Final Editing of Data

Final editing of the output from Subtask 8 resulted in a set of reduced data records designated <u>Integral</u> tapes. These tapes constitute the second form of data supplied to the NSSDC.

Final editing of data included the following steps:

- a) Addition of hand-scaled bandwidths as a partial independent check on Subtask 8 (see Subtask 10).
- b) Addition of spacecraft antenna gain in the direction of specular reflection.
- c) Notation of operational or data processing changes
 - i) Polarized band bad
 - ii) Unpolarized data bad
 - iii) Change in polarized noise level
 - iv) Change in polarized k indices for echo limits
 - v) Change in unpolarized noise level
 - vi) Change in unpolarized k indices for echo limits
 - vii) Change in system gain

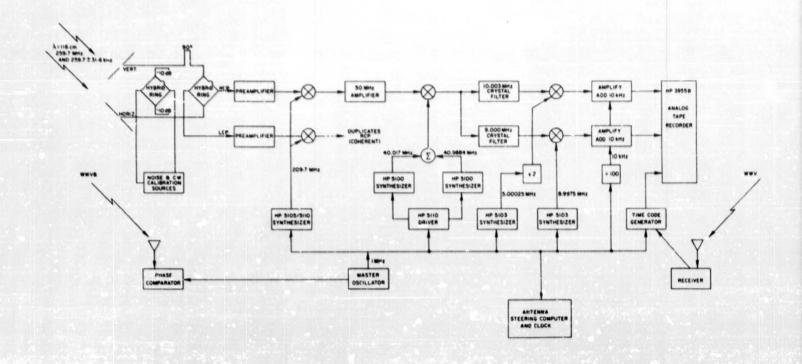
Caution: Some integral data, primarily at the beginning or end of a transmission, have been deleted. Large overlaps in the 13 cm data caused by the use of two analog tape recorders have also been deleted. In all other cases bad data, for example when interference is present, are flagged on the edited Integral tapes as described in c) above (see Appendix VI, E47). The data contained on the Integral tapes are still the experimenter's best estimates of the values. However, in the case of flagged data, that estimate may be very poor. No flagged data should be used without examining the spectra on the corresponding JM Doptrack tapes. For example, in the 116 cm data occasional interference produced marked increases in the apparent polarized echo power, but evidently left the unpolarized

Subtask 9 (cont.)

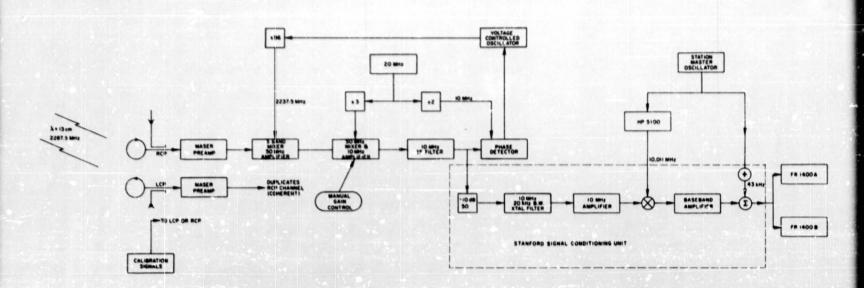
power unaffected. A flag for polarized power thus may also cast suspicion on the unpolarized power. The experimenters have evaluated these cases and indicated their opinions accordingly in the data. Other individuals may arrive at different conclusions. It is primarily for this reason that the JM Doptrack/Integral tape frame-to-record correspondence (through ephemeris data) has been maintained: reduced data records on the Integral tapes may, if questioned, be re-evaluated from the JM Doptrack source tapes. A complete description of the Integral tape formats and the flags is given in Appendix VI.

Displaying, Scaling, and Copying the Data

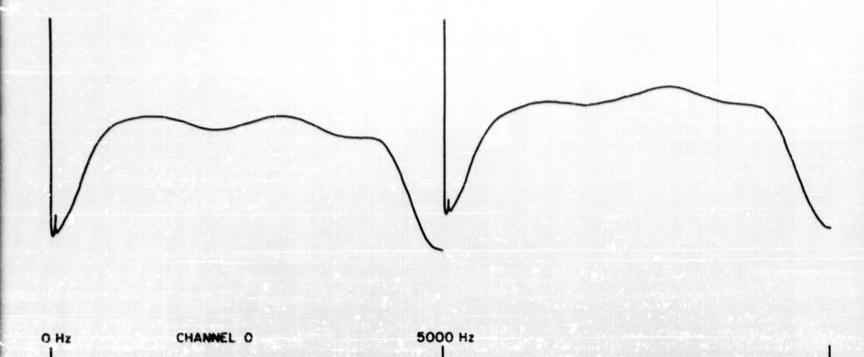
Output from Subtask 6, the JM Doptrack tapes, is used in miscellaneous programs in preparation for data analysis and distribution. An important step in producing the final Integral tapes (Subtask 9) took place here. Polarized power spectra obtained from JM Doptrack tapes are computer plotted and visually examined to determine specifically


- a) proper receiver operation
- b) proper receiver tuning
- c) presence of interference.

Such plots are also used to determine the one-half power, hand-scaled bandwidths added to the data set in Subtask 9. This bandwidth is determined by measuring the width of the polarized echo spectrum at a point one-half the distance from the apparent system noise level to the mean echo peak. The measured distance is scaled by the appropriate factor to determine the width in Hertz. Such measures can be related to the rms slope of the lunar surface from the quasi-specular scattering theory (see Appendix VI). The hand-scaled values are used to verify the machine algorithms used in computing lunar rms slopes and as a simple means of quickly estimating the slope.

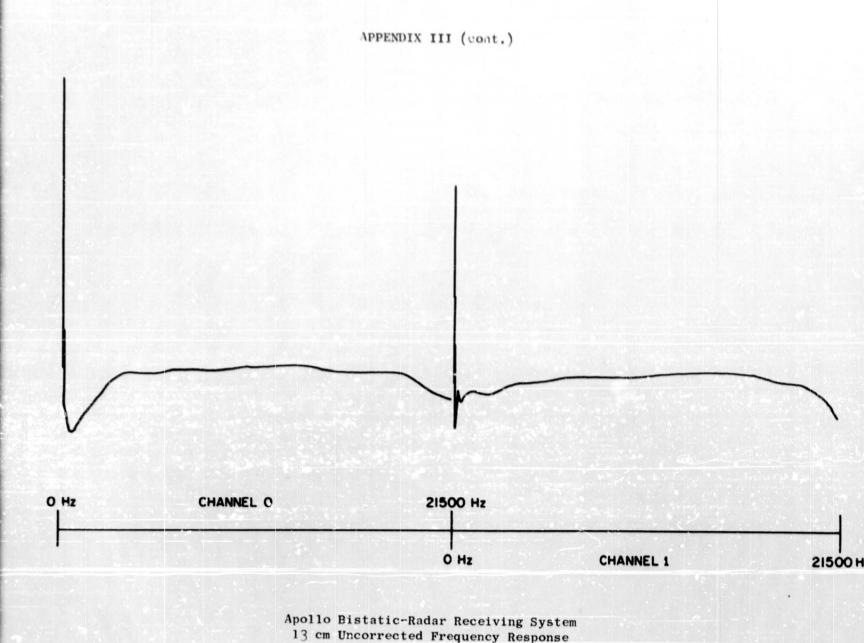

Finally, this subtask included copying of the JM Doptrack tapes for shipment to the NSSDC. These tapes were not edited.

Utility Routines


Integral tapes have been organized as a sequence of records describing the data and experimental geometry at successive instances of time. It is then a simple matter to determine any set of variables from this tape with time as a parameter. We suggest that data users consider this data as a set of dependent functions parameterized in time and hope that such a presentation is found useful.

Stanford Apollo 116 cm (VHF) Bistatic-Radar Receiving System:
Major Elements

Stanford Apollo 13 cm (S-Band) Bistatic-Radar Receiving System:
Major Elements



Apollo Bistatic-Radar Receiving System 116 cm Uncorrected Frequency Response

O Hz

CHANNEL I

5000 Hz

Appendix IV

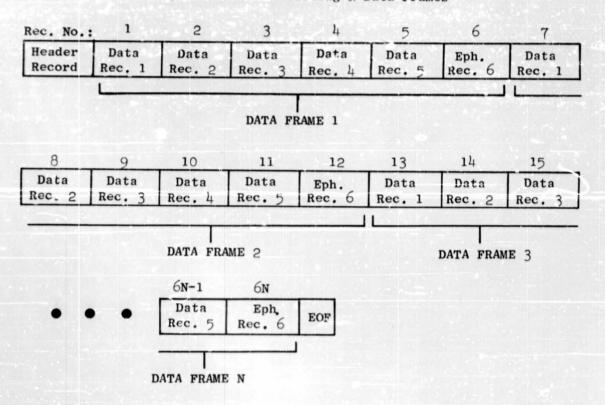
JM Doptrack Tape Formats

This appendix describes the tape formats for the JM Doptrack Tapes generated in Subtask 6 of the text. Tapes are 9 track, binary in XDS Sigma 5 machine images. These tapes contain the output of the polarimeter in Subtask 4, the corrected fractional polarization obtained from Subtask 5, MSC trajectory data, and certain ancillary quantities computed at Stanford. All records within the given file are the same length. There may be more than one tape per file. Files are identified by a header record which contains a brief description of the file contents. This appendix describes the tape organization, the file organization, and the record formats for the JM Coptrack tapes. Definitions of the tape contents are either given here or described by reference.

A. File Organization

File	No. Tapes	Contents	Record Length
1	1	Apol10-14 116 cm	514 words
2	1	Apol10-14 13 cm	514 words
3	1	Apollo-15 116 cm	1026 words
4	2	Apollo-15 13 cm	514 words
5	1	Apol10-16 116 cm	1026 words
6	2	Apol10-16 13 cm	514 words

B. File Organization


- 1. Header Record
- 3. EOF (End of File Mark)

See Appendix XI for a description of Sigma 5 machine images.

If more than one tape was needed to contain the JM Doptrack file, the file was continued across the end of the tape to the next tape without interruption; there is only one header record per file, at the beginning of the first tape of the file.

Once again, even though the files are physically nothing more than a continuous string of records, all of equal length, it is helpful to think of them (see figure below) as being composed of a header record followed by groups (frames) of six records. The ephemeris data record concludes the frame and, since each JM data frame is a short-time average, the ephemeris data have been calculated using the midpoint of the frame as the instantaneous time reference point.

JM Doptrack File Containing N Data Frames

C. Header Record Formats

Word No.	Contents	Units	Machine Type
1-42	Alphanumeric file identifier		Α
43	Day of year on which data were collected (January 1 = 1)	(days)	I
1414	Year data were taken (Gregorian)	(year)	I
45-46	Julian Ephemeris Day at 00:00 UT2 on the day the data were taken	(days)	DPR
47-48	Julian Ephemeris Day of reference epoch	(days)	DPR
49	Time increment between centerpoint of data averaging frame	(sec)	R
50	Number of data records following this header record (Number of data frames = number of data records divided by 6)		ı
51-514/1026	Not used		

D. Data Frame Formats

1. Data Record Organization

Record No.	Contents	Note:
1	J ₁₁ (k)	116 cm data
2	J ₂₂ (k)	J ₁₁ (k) - <u>Left</u> circu- lar polariza-
3	Real part of J ₁₂ (k)	tion
4	Imaginary part of J, 2(k)	J ₂₂ (k) - Right circu- lar polariza-
5	γ(k)	lar polariza- tion
6	Spacecraft ephemeris and ancillary data	13 cm data
		J ₁₁ (k) - Right circular polirization
		J ₂₂ (k) - <u>Left</u> circu- lar polari- zation

α - Alphanumeric
I - Integer

R - Real

DPR - Double Precision Real

D. 2. Format Records 1-5 (all machine type real) "

Record No.	Contents
1-513/1025	Data described under D.1 above
514/1026	Meaningless

3. Format Record 6 (all machine type real)

Word No.	Contents	Units
1	Meaningless	
2	UT2 at midpoint of frame	(sec)
3	Reflected doppler minus direct doppler	(Hz)
_ 4 _	Predicted bandwidth for rms surface slope of 0.1	(Hz)
5	Angle of incidence	(deg)
6	Spacecraft altitude (mean lunar radius assumed 1736 km)	(km)
7	Spacecraft speed	(m/sec)
8	Radar cross section pre- dicted for smooth conduc- ting moon	(dim)
9	(Radar cross section)/ (received power)	(m ² /w)
10 11 12	X Components of seleno- graphic unit position vector of spacecraft location	(dim)
13 14 15	X Components of seleno- graphic unit position vector of specular point location	(dim)
16	Selenographic latitude of subspacecraft position	(deg)
17	Selenographic longitude of subspacecraft position	(deg)
18	Component of doppler shift due to earth rotation	(Hz)

Due to a hardware problem in the data processing, words 1-15 are zero in the Apollo-14, 116 and 13 cm, and Apollo-15 13 cm files.

D. 3. Format Record 6 (all machine type real) (cont.)

Word No.	Contents	Units
19	Total doppler shift of reflected signal	(Hz)
20	Selenographic latitude of specular point	(deg)
21	Selenographic longitude of specular point	(deg)
22	Speed of specular point on the lunar surface	(M/sec)
23	Qe Vehicle look angles	
24	β_e Vehicle look angles to earth	
25 26 27	 θ Ψ φ Euler angles of local horizon coordinates 	(deg)
28 29 30	X Spacecraft selenographic unit velocity vector Z	(dim)
31 32 33	X Selenographic unit vector from center of moon to center of earth	(dim)
34-514/1026	Not used	

Note: Data do not always progress uniformly in time. Occasionally, data frames will reverse in time for one frame, and then continue forward. This effect is caused by the sampling procedure in which deliberate overlap was inserted. Time on data is correct.

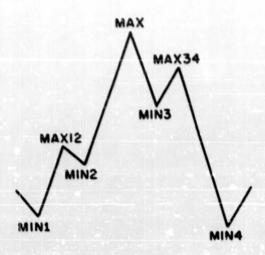
E. Definition of Contents

- 1. Data -- defined under Subtasks 4 and 5 of the text.
- 2. Ephemeris and Ancillary Data -- described in greater detail in Appendix VI.

Appendix V

Carrier Suppression Algorithm

This appendix describes the algorithm used to remove the direct signal from the polarized and unpolarized parts of the bistatic-radar echo spectrum (see Subtask 7). This algorithm was used on each frame of polarized and unpolarized data which the JM Doptrack tapes yield according to relation (8), Subtask 4. Two slightly different procedures were used for the 116 cm and 13 cm data. These differences constituted the only difference in procedure between the 116 cm and 13 cm data. Both data sets were processed by the same computer program, with different program branches for the two cores. The direct signal observed at 13 cm was free of spurious sidebands to the level of our observations. At 116 cm, the direct signal contained two weak sidebands symmetrically displaced approximately 20 db below the direct signal. Consequently, during periods of strong direct signal at the 116 cm wavelength, it was also necessary to correct for the presence of these sidebands. The procedures described below were developed empirically but were found to give good results. The approach was to find the maximum of the power spectrum and to assume that this maximum represented the direct signal. This assumption was tested by determining the height of the maximum with respect to the fluctuations in the spectrum in the immediate vicinity of the maximum. If the maximum exceeded the fluctuation criteria then an interpolation procedure was used to provide a smoothed estimate of the spectrum. In the case of the 116 cm data, sideband suppression was achieved by reducing the local maximum on either side of the direct signal by an amount proportional to the strength of the direct signal. A detailed summary of this procedure is given below.


Initial Test

- 1. Find the absolute maximum of all the data, MAX (see figure which follows).
- 2. Find the adjacent local maxima, MAX12 and MAX34.
- Test MAX to determine whether or not it represents the direct signal.

i) SUM =
$$MIN1 + MIN2 + MAX12 + MIN3 + MIN4 + MAX34$$
8 4 8 4

Initial Test (cont.)

- ii) CRIT = 1.2.SUM
- iii) (MAX.LT.CRIT) ⇒ no direct signal present, terminate procedure; go to next frame, initial test 1. (MAX.GE.CRIT) ⇒ direct signal present, continue.
- 4. Check data type. If data is 116 cm then go to step 8, otherwise continue with step 5.

13 cm Procedure

5. Test for a smooth direct signal.

IF (2.0.MIN1.GE.MIN2)
and ⇒ smooth direct signal.
(2.0.MIN4.GE.MIN3)

If the direct signal is smooth then all values between MIN2 and and MIN3 which are greater than CRITC are set equal to CRITC and the procedure is terminated; initial test 1 is then begun on the next frame. If the test for smoothness is failed, then continue with step 6.

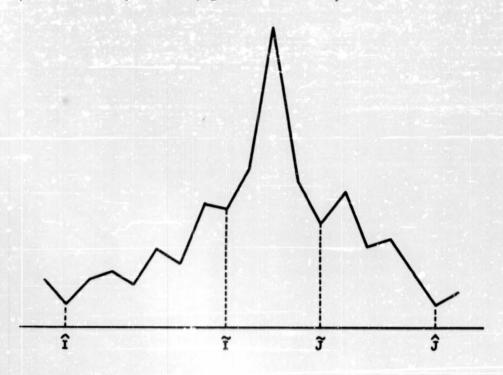
6. This procedure is applied only if the direct signal is spread through several frequency analysis bins. Determine the first minimum on either side of the direct signal which

Initial Test (cont.)

satisfies the following condition:

(MIN(I).LT.MIN(I-1).2.0) Where I indexes the left side of the direct signal

(MIN(J).LT.MIN(J+1).2.0) and J indexes the right side of the direct signal (see fig. below).


If the conditions are not satisfied in 15 minima, choose the 15th minima. Denote the extreme minima \hat{I} , \hat{J} . MIN(\hat{I}) and MIN(\hat{J}) locate the extent of the spread direct signal. Denote the minima adjacent to the direct signal \tilde{I} , \tilde{J} . Then replace the data D() with D*() calculated as follows:

$$D^{\dagger}(L) = D(L) - \frac{D(\widetilde{1}) - D(\widehat{1})}{\widetilde{1} - \widehat{1}} \cdot (L-\widehat{1}); \ \widehat{1} + 1 \le L \le \widetilde{1} - 1$$

$$D^{\dagger}(L) = D(L) - \frac{D(\widehat{J}) - D(\widetilde{J})}{\widehat{J} - \widetilde{J}} \cdot (L-\widehat{J}); \ \widetilde{J} + 1 \le L \le \widehat{J} - 1$$

$$D^{\dagger}(L) = D(\widetilde{1}) + \frac{D(\widetilde{J}) - D(\widetilde{1})}{\widetilde{J} - \widetilde{I}} \cdot (L-\widetilde{1}); \quad \widetilde{I} \le L \le \widetilde{J}.$$

7. Terminate procedure; go to next frame, initial test 1.

116 cm Procedure

- 8. Find the largest local maximum within 60 Hz of the direct signal on first the left side and then on the right side of the direct signal. Designate these maxima MAXL, MAXR, respectively.
- 9. Determine relative magnitude of the direct signal.

CRITSB = 200.0 · SUM

If (MAX.GE.CRITSB) then the direct signal is sufficiently large to require compensation for the sidebands. Replace MAXL and MAXR by the average value of their respective adjacent minima.

IO. If (MAX.LT.CRITSB) the direct signal is small. Subtract a constant from the maxima MAXL and MAXR, defined above. The constant is

ESUB = (MAX - SUM)/500.0

The subtraction is performed only if the data value is greater than ESUB.

- 11. Replace MAX by the average of MIN2 and MIN3.
- 12. Terminate procedure and go to next frame, initial test 1.

Appendix VI

Integral Tape Format

The Integral tape contains reduced data records generated in Subtask 7, 8 and 9 (see Block Diagram I). This appendix gives the detailed formatting of that tape and describes all ancillary computations.

A. Tape Organization

The table below gives the file contents and data record length for the Integral tape.

File No.	Contents	Record Length
1	Apollo-14 116 cm	50 words
2	Apollo-14 13 cm	50 words
3	Apollo-15 116 cm	50 words
14	Apollo-15 13 cm	50 words
5	Apol10-16 116 cm	50 words
6	Apol10-16 13 cm	50 words

The tape is 9 track, 800 BPI, binary in XDS Sigma 5 machine images. See Appendix XI for a description of Sigma 5 machine images.

B. File Organization

- 1. Header Record
- 2. Data Record

: <many data records>

- 3. (EOF) End of File
- 4. Header Record

5.

C. Header Record Format

Word No.	Contents	Units	Machine Type
1-42	Alphanumeric file identifier		A
43	Day of year on which data were collected (January 1 = 1)	(days)	I
1+14	Year data were taken	(year)	I
45-46	Julian Ephemeris Day at 00:00 UT on the day the data were taken		DPR
47-48	Julian Ephemeris Day of reference epoch	days)	DPR
49	Time increment between center- point of data averaging frame	(sec)	R
50	Number of data records follow- ing this header record		I

D. Data Record Format (all machine type real)

Word No.	Contents	Units
1	Meaningless	
2	UT2 at midpoint of frame	(sec)
3 4 5	X Components of seleno- graphic unit position vector of spacecraft location	(dim)
6 7 8	Y Components of seleno- graphic velocity unit vector	(dim)
9	Speed: Magnitude of space- craft velocity vector	(m/sec)
10 11 12	Y Components of seleno- graphic unit vector from center of the moon to center of the earth	(dim)

α_A - Alphanumeric

I - Integer

R - Real

DPR - Double Precision Real

D. Data Record Format (all machine type real) (cont.)

Data Recor	d Format (all machine type real)	(cont.)
Word No.	Contents	Units
13	X Components of seleno-	
14	y graphic unit position	(dim)
15	z vector of specular point location	()
	1	
16	θ Euler angles of space- craft attitude and	(4)
17	local horizon frame	(deg)
18	ØJ	
	$\bar{A}_{veh} = \begin{bmatrix} \phi \\ x \end{bmatrix} \begin{bmatrix} \psi \\ z \end{bmatrix} \begin{bmatrix} \theta \\ y \end{bmatrix}$	$\begin{bmatrix} \bar{A}_1 & \text{cw rotation look-} \\ \text{ing in + axis} \\ \text{direction} \end{bmatrix}$
19	α Vehicle look angles to sp	ecular
20	B point	(deg)
21	δ Angle between plane of inc	ci-
	dence and plane containing	g
	both the vehicle x axis and direction vector to specu	
	point	
22	$\begin{pmatrix} \alpha_e \\ \beta_e \end{pmatrix}$ Vehicle look angles to ear	
23	Vehicle look angles to ear	rth (deg)
24		
24	Selenographic latitude of space craft position	(deg)
25	Selenographic longitude of spa	
	craft position	(deg)
26	Selenographic latitude of spec	
	lar point	(deg)
27	Selenographic longitude of	
28	specular point	(deg)
	Angle of incidence	(deg)
29	Instantaneous speed of specu- lar point on lunar surface	(m/sec)
30	Predicted bandwidth for rms	(m/sec)
30	surface slope of 0.1	(Hz)
31	Reflected doppler minus direct	
	doppler	(Hz)
32	Total doppler shift of reflec-	
	ted signal	(Hz)
33	Component of doppler shift	
	due to earth rotation	(Hz)

D. Data Record Format (all machine type real) (cont.)

Word No.	Contents	Units
34	Altitude of spacecraft above lunar surface: Radius of the	-
	moon assumed to be 1736 Km	(Km)
35	Radar cross-section predicted for smooth conducting moon	(dim)
36	(Radar cross-section)/ (received power)	(m ² /w)
37	Polarized power	(arb)
38	Normalized polarized power	(°k)
39	Unpolarized power	(arb)
40	Normalized unpolarized power	(°k)
41	Equivalent area bandwidth	(Hz)
42	Normalized absolute moment bandwidth	(dim)
43	Normalized second moment bandwidth	(dim)
44	Centroid of the echo spectrum	(Hz)
45	RMS slope inferred from equiva- lent area bandwidth	(deg)
46	Spare if value equals zero, otherwise handscaled one-half power echo bandwidth	(fiz)
47	Data validity flag	
48	Spare if value = 0, otherwise value of spacecraft antenna gain in α_s , β_s , direction (see word no. 19,	
lo	20)	(dim)
49	Not used	
50	Data record sequence number	

Note: Data do not always progress uniformly in time. Occasionally, data records will reverse in time for one record, and then continue forward. This effect is caused by the sampling procedure in which a small deliberate overlap was inserted. Time tags on data are correct. Overlapping data correspond to the same time interval but different sampling passes. Slight differences arise from variation in exact times averaged.

E. Data Parameter Definitions

The remainder of this section defines the contents of the data records described just above. The individual subsection numbers correspond to the word numbers in Section D (Data Record Format). If a particular quantity has been described at length elsewhere, a reference will be given. Otherwise, the quantity is defined here.

- 1. Meaningless
- 2. Time is the UT2 in seconds at which the data were taken. This time corresponds to the mid-point of the averaging interval, as described under Subtask 4. All trajectory parameters have been interpolated to this time, so that geometrical quantities correspond to the location of the specular point on the mean lunar surface at the middle of the averaging interval.
- 3, 4, 5. Selenographic Unit Position Vector is defined with respect to the lunar surface. This vector is a unit vector directed from the center of the moon for the instantaneous location of the spacecraft. The X, Y, Z directions are defined as follows:

X = mean earth direction

Y = mean direction of the following limb

Z = north polar direction.

The selenographic coordinates were obtained by rotation from the selenocentric geo-equatorial units of the epoch given in the header record. Procedures are described elsewhere (Tyler, 1968).

- 6, 7, 8. Selenographic Unit Velocity Vector is a unit vector in the direction of the spacecraft velocity. The coordinate system is the same as that given in items 3, 4, 5 above.
- 9. Speed is the magnitude of the spacecraft velocity vector.
- 10, 11, 12. Selenographic Unit Vector to Earth is a unit vector giving the direction from the lunar center of mass to the center of mass to the earth in the selenographic coordinate system described in the 3, 4, 5 above.

- 13, 14, 15. Selenographic Unit Position Vector of Specular Point is a unit vector from the center of mass of the moon to the location of the specular point on the mean spherical lunar surface. For this computation the lunar radius was taken as 1736 km. The specular point is the location on the mean lunar surface where the angles of incidence and reflection are equal (cf Tyler, 1968).
- 16, 17, 18. Euler Angles of Spacecraft Attitude connect the spacecraft altitude with a local horizon reference frame. Both the Local Horizon system and the Euler angles are defined in Appendix IX.
- 19, 20. Look Angles to Specular Point are in vehicle polar coordinates.

 These quantities are defined in Appendix IX.
- 21. Plane of the Vehicle, the orientation with respect to the plane of incidence, is given by the angle 8. This quantity is necessary to define the vehicle attitude with respect to the plane of incidence. The angle 8 is defined in Appendix IX.
- 22, 23. Look Angles to Earth are the vehicle polar coordinates of a unit vector in the earth center of mass direction. These quantities were computed in the same manner as items 19, 20 above using the unit vector to earth.
- 24. Selenographic Latitude of Spacecraft Position is the selengraphic latitude of the subspacecraft point computed from the Z component of the unit vector given in items 3, 4, and 5.
- 25. Selenographic Longitude of Spacecraft Position is the selenographic longitude of the subspacecraft position computed from items 3, 4, and 5 according to astrometric convention, western limb of the moon leading.
- 26. Selenographic Latitude of Specular Point is the selenographic latitude of the specular point on a mean spherical lunar surface computed from item 15.
- 27. Selenographic Longitude of Specular Point is the selenographic longitude of the specular point on the mean spherical lunar surface computed from items 13, 14, 15.

- 28. Angle of Incidence is the angle of incidence on mean spherical lunar surface at the specular point (cf Tyler, 1969).
- 29. Speed of the Specular Point is the speed with which the instantaneous specular point moves across the mean lunar surface (Tyler, 1968).
- 30. Predicted Bandwidth is the one-half power spectral width predicted for an rms surface slope of 0.1, based on the instantaneous angle of incidence and specular point velocity. Computation is after Fjeldbo (1964), also described in Tyler, (1968). Fjeldbo gives a theoretical expression for the 1/2 power echo bandwidth:

$$\Delta f = 4(2\ln 2)^{1/2} \frac{v_s}{\lambda} \frac{h_o}{d_o} \cos \phi ,$$

where v_s = velocity of the specular point on the mean lunar surface, λ = wavelength of the radiation (either 116 cm or 13 cm), ϕ = angle of incidence at the specular point, and the quantity $\frac{h_0}{d_0}$ = the mean lunar rms slope.

The quantity Δf is the 1/2 power bandwidth predicted for a gaussian spectrum. Such a spectrum would result from a gently undulating surface with gaussian autocorrelation function.

- 31. Difference Between Reflected and Direct Doppler Shifts is the predicted frequency difference between a wave reflected from the specular point and the signal traveling directly from the spacecraft to earth. Sign convention is such that the difference is positive for a reflected doppler shift greater than the direct doppler shift.
- 32. Doppler Shift is the total doppler shift expected from the reflected signal. Computation of this doppler shift included spacecraft motion and the earth's rotation, but did not include the rate of change of distance between the earth and the moon.
- 33. Doppler Due to Earth's Rotation is the component of the observed doppler shift due to the earth's rotation, for a signal arriving from the direction of the moon.

- 34. Altitude of the spacecraft above the lunar surface has been computed assuming a lunar radius equal to 1736 km. The magnitude of the spacecraft radius vector from the lunar center of mass is obtained by adding the contents of word no. 34 to 1736 km.
- 35. Normalized Bistatic-Radar Cross-Section is the bistatic-radar cross-section of a smooth conducting sphere of the same radius and relative geometry as the moon. Following Fjeldbo (1964) this cross-section is given by

$$\sigma_{\rm B} = \frac{\frac{1_{\rm H} R_1^2 \cos \phi}{\left(\cos \phi + \frac{2d_{\rm or}}{R}\right) \left(1 + \frac{2d_{\rm or} \cos \phi}{R}\right)},$$

where

 R_1 = distance from transmitter to the center of the moon

 $R = 1 \text{unar radius } (1.736 \times 10^6 \text{ m})$

 ϕ = angle of incidence (cf item 28)

dor = distance from the transmitter to the specular point on the mean lunar surface.

36. (Radar Cross Section)/(Received Power) is a multiplicative constant relating instantaneous geometry and received power to surface reflectivity.

$$\frac{\text{radar cross-section}}{\text{received power}} = \frac{(4\pi)^2 R_1^2 R_2^2}{A P_T G_T \sigma_B}$$

where

 R_1 = distance from transmitter to center of the moon

 R_{ρ} = distance from receiving site to center of the moon

A = effective aperture of receiving antenna

P_T = transmitted power

 $G_{T}^{}$ = transmitting antenna gain in specular point direction

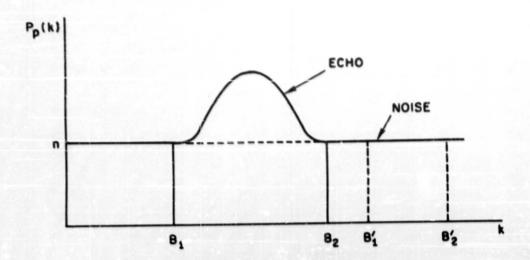
 σ_B = bistatic-radar cross-section for a perfectly conducting moon.

For convenience, this expression was evaluated with the following numerical values for the quantities above:

 R_1 = instantaneous value from MSC trajectory σ_B = instantaneous value from item 35 above R_2 = 4 x 10⁸ m
A = 0.5 (22.5)² π G_T = 1 P_T = 2.5 w.

These values give only order of magnitude results for this experiment.

37. Polarized Power is the experimenter's best estimate of the polarized component of the received echo total power. Extraction of the polarized power is discussed elsewhere (cf Subtask 8).


Denote the polarized power spectrum $P_p(k)$. Consider the figure below. Polarized power is determined from

$$P = \sum_{k=B_1}^{B_2} (P_p(k) - n).$$

The $P_p(k)$ is a polarized power spectrum. In the determination of P, the signal limits B_1 , B_2 and n were selected by the experimenter. The quantity n was chosen on the basis of

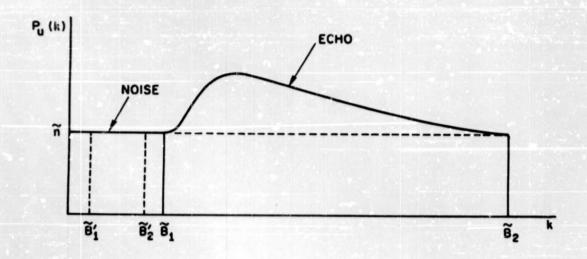
$$\sum_{\mathbf{B_1^t}}^{\mathbf{t}} (\mathbf{P_p(k)} - \hat{\mathbf{n}}) \sim 0$$

where B_1^{\dagger} , B_2^{\dagger} represent spectral limits containing no echo signal, and \hat{n} represents a sequence of trials of n. The limits B_1 , B_2 , B_1^{\dagger} , B_2^{\dagger} , were varied as is necessary to follow the changing echo signal.

38. Normalized Polarized Power is the quantity contained in item 37 divided by the average power spectral density of the system noise level. This quantity has been discussed in detail elsewhere (cf Subtask 8).

Using the notation introduced under item 37,

normalized polarized power = P/n,


where P and n have the same meaning as above.

- Note: P/n is extremely sensitive to the choice of n. Thus, polarized power is considered the best overall measure of received polarized echo power. But P/n provides the only method, through the measure of system temperature, of obtaining an absolute power calibration. Similarly, the value of n may be determined from the ratio of polarized power to P/n, so that the variations and system temperature and/or gain may be estimated.
- 39. Unpolarized Power is the analogous quantity to item 37, for the unpolarized power spectrum. The unpolarized power was obtained in a manner similar to that used to compute polarized power. Letting

 $P_{\mathbf{u}}(\mathbf{k})$ represent the unpolarized power spectra, and referring to the figure below, the unpolarized power is given by

$$U = \sum_{\widetilde{B}_{1}}^{\widetilde{B}_{2}} (P_{u}(k) - \widetilde{n}),$$

where the tildas refer to the values of B and n used in the unpolarized power spectrum. In general, the limits for the polarized and unpolarized echoes were different, as was the value of the system noise level. The difference in frequency limits arose from the difference in the spectral distribution of the unpolarized power; the difference in system noise temperature arose from the signal processing used to separate these quantities (cf Subtask 4, 5). The value of \tilde{n} was chosen in a manner similar to that of n in item 37. In some cases, it was not clear that all the unpolarized power is contained in the receiver passband. In this event, \tilde{B}_1 or \tilde{B}_2 was set equal to the upper or lower frequency limit as appropriate.

40. Normalized Unpolarized Power is the analogous quantity to item 38, for the unpolarized power spectrum. The normalized unpolarized power is defined as

normalized unpolarized power = U/n

where the symbols have the same meaning as in item 39. Comments given under item 38 are also germane to normalized unpolarized power.

41. Equivalent Area Bandwidth: the spectrum of a bistatic-radar echo from a well behaved surface may be written as (Fjeldbo, 1964):

$$S(f) = e^{\frac{-\pi^2 f^2}{2} \left[4v_s(\pi/\lambda) \cos \phi \left(\frac{h_o}{d_o} \right) \right]^{-2} = e^{-f^2/2\sigma^2},$$

where

f = frequency measured from the centroid of the echo spectrum

v = speed of the specular point across the mean lunar surface

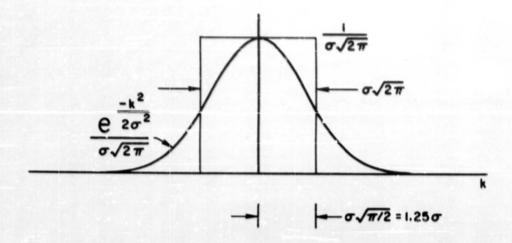
 λ = wavelength

 ϕ = angle of incidence, and

 $h_0/d_c = unidirectional rms slope.$

^{*}The three machine calculated bandwidths, i.e., the equivalent area bandwidth, the absolute moment bandwidth, and the second moment bandwidth, provide three quasi-independent methods of determining the spectral width of the received echoes. The equivalent area bandwidth provides a standard result that is not particularly sensitive to the gaussian, or non-gaussian nature of the echo spectrum. The absolute moment bandwidth and the second moment bandwidth so emphasize departures from gaussian because of the increasing importance given to the wings of the spectrum.

Equivalent area bandwidths have been used to determine lunar rms slopes. The absolute moment bandwidths and the second moment bandwidths, when normalized by the equivalent area bandwidth, give a sensitive measure of the departures of the echo spectra from the gaussian conditions. RMS slopes derived from these measures are termed "gaussian equivalent slopes" in that they would correspond to true surface conditions for a surface with gaussian statistics and a gaussian autocorrelation function with the same equivalent widths. A more complete description of the lunar slopes requires additional analysis (e.g., see Parker and Tyler, 1973).


Solving for rms slope in terms of measured values of standard deviation, $\hat{\sigma}$, of an experimental spectrum yields

$$h_o/d_o = \frac{\hat{\sigma}}{2(v_s/\lambda) \cos \phi}$$
.

Thus, the rms slope may be readily determined from an experimental curve in terms of the e^{-1} width of that curve. The equivalent area bandwidth is a measure of $\hat{\sigma}$ based on an equivalent rectangular spectrum of the same area as the experimental spectrum. This width is computed as

$$\hat{\sigma}_{ea} = \frac{c_2}{\sum_{max P_p(k)}^{p_p(k)}} \cdot (2\pi)^{-1/2}, c_1 < k < c_2.$$

Referring to the figure which follows, the quantity $\hat{\sigma}_{ea} = \sigma$ if the observed curve is gaussian and noiscless. For non-gaussian data $\hat{\sigma}_{ea}$ is still a measure of the bandwidth, although the interpretation must be modified. RMS slopes determined from $\hat{\sigma}_{ea}$ and the expression immediately above will be referred to as equivalent area slopes. The quantity $\hat{\sigma}_{ea}$ is the equivalent area bandwidth.

42. Normalized Absolute Moment Bandwidths are based on an equivalent value of $\hat{\sigma}$ computed from the absolute moment of the data. That is,

$$\hat{\sigma}_{am} = \frac{\sum_{k=C_{1}}^{C_{2}} P_{p}(k) |k-\bar{k}|}{\sum_{k=C_{1}}^{C_{2}} \cdot \sqrt{\frac{\pi}{2}}} \cdot \sqrt{\frac{\pi}{2}}; \quad \bar{k} = \frac{\sum_{k=C_{1}}^{C_{2}} P_{p}(k) |k|}{\sum_{k=C_{1}}^{C_{2}} P_{p}(k)}$$

for a gaussian spectrum the equivalent area moments and the absolute moments will be equal

$$\hat{\sigma}_{am} = \hat{\sigma}_{ea} = \sigma$$

where the symbols have the same meaning as in item 41.

The normalized absolute moment bandwidth is

For a gaussian echo spectrum this ratio will be unity.

43. Normalized Second Moment Bandwidth: the second moment bandwidth is also based on gaussian equivalence. This bandwidth is defined as

$$\hat{\sigma}_{sm}^{2} = \frac{\sum_{k=C_{1}}^{C_{2}} P_{p}(k) (k-\bar{k})^{2}}{\sum_{k=C_{1}}^{C_{2}} P_{p}(k) \cdot k} = \frac{\sum_{k=C_{1}}^{C_{2}} P_{p}(k) \cdot k}{\sum_{k=C_{1}}^{C_{2}} P_{p}(k)} \cdot k$$

For a gaussian echo spectrum

$$\hat{\sigma}_{sm} = \hat{\sigma}_{am} = \hat{\sigma}_{ea} = \sigma$$

where the symbols have the same meaning as under items 42 and 41.

The normalized second moment bandwidth is given by

Again, departures of this ratio from unity are indicative of a non-gaussian received echo spectrum

44. Centroid of the Echo Spectrum: the centroid of the echo spectrum is defined in the standard way:

$$\bar{\mathbf{k}} = \frac{\sum_{\mathbf{k}=\mathbf{C}_1}^{\mathbf{P}_{\mathbf{p}}(\mathbf{k}) \cdot \mathbf{k}}}{\sum_{\mathbf{k}=\mathbf{C}_1}^{\mathbf{P}_{\mathbf{p}}(\mathbf{k})}}$$

where the symbols have the same meaning as in 41, 42 and 43. The values of C_1 , C_2 are held constant throughout items 41, 42, 43 and 44. The echo spectrum centroid is used in the computations of the absolute moment bandwidths and the second moment bandwidths. It is also useful for estimation of the observed doppler difference (cf item 31). However, the centroid has no direct meaning in an

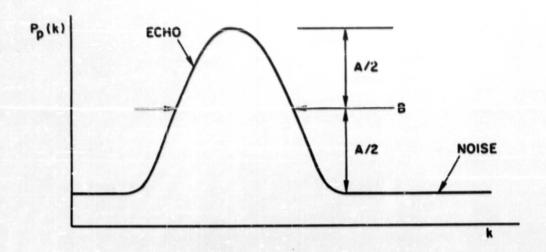
absolute sense because the transmitter frequencies from the spacecraft are not known precisely.

45. RMS Slopes are obtained from the equivalent area bandwidths according to

$$\frac{\dot{a}_{o}}{\dot{d}_{o}} = \frac{\hat{\sigma}_{ea}}{2(v_{s}/\lambda) \cos \phi}$$

and

unidirectional rms slope (deg.) =
$$tan^{-1} (h_o/d_o)$$
,


where the results are expressed in degrees for convenience. The quantities v_s , λ , ϕ and $\hat{\sigma}_{ea}$ have been defined in item 41.

46. Handscaled 1/2 Power Echo Bandwidths: handscaling of polarized echo bandwidths has been discussed previously under Subtask 10.

A 1/2 power echo bandwidth is defined as the quantity "B" in the figure which follows. In practice, this value was obtained by bandscaling data from plots. The handscaled bandwidths provide a rapid, simple technique for the evaluation of lunar rms surface slopes. The handscaled bandwidths were also used as a controlling parameter in development of automated techniques for obtaining echo bandwidths. RMS slopes may be obtained from the handscaled bandwidths by

rms slope =
$$5.7^{\circ}$$
 x B (predicted 1/2 power bandwidth for rms slope of 0.1)

where the result is given in degrees for convenience. Predicted 1/2 power bandwidths for 0.1 rms slopes are given in word no. 30 of the integral tape data records. Hand measurements were made only for selected segments of the data.

47. Flag: the flag word contains a seven level binary code that indicates data quality. A bit in the "1" condition indicates the existance of a special condition in the data. A bit position in the "0" state carries no meaning other than that the data are normal.

The interpretation of the bit positions is as given below.

Bit in "1" Condition	Implication
1	Polarized power data questionable or no good
2	Unpolarized power data questionable or no good
3	Polarized noise level, n, (cf item 37) changed this data record
4	Polarized integration bounds B ₁ , B ₂ , (cf item 37) changed this data record
5	Unpolarized noise level, n, (cf item 39) changed this data record
6	Unpolarized integration bounds, \tilde{B}_1 , \tilde{B}_2 , (cf item 39) changed this data record
7	System gain changed this data record

Explanation

Bit Position "1"

Polarized data may be flagged for any one of a number of reasons. The presence of interference, an error in setting the integration bounds, or a tape drive error in the data processing are examples of difficulties that would result in such a flag. In case of gross errors the flag represents an objectively known bad data point. In the case of a more subtle phenomenon such as interference, the flag represents an experimenter's subjective opinion. For the 116 cm data interference is the predominant cause of a data bad flags. Data users who wish to examine this question for themselves may do so by reprocessing the data from the JM Doptrack tapes. It is very strongly recommended that no flagged data be used without taking this precaution.

Bit Position "2"

Unpolarized data may be flagged for the same reasons as those given for the polarized data under bit position "l" above. However, because gross errors for polarized and unpolarized data may be independent, and because the unpolarized data possess a certain immunity to interference, which tends to be polarized, the flags in bit position "l" and "2" are not necessarily coincident. As before, in the case of interference, the investigator's judgment is involved.

Bit Position "3"

This flag is set when the noise level, i.e., n in item 37, is changed during the data reduction process. This flag serves to alort the user that such a change has been made. Any discontinuity that occurs when this bit is set is likely to result from this cause. In the case of the polarized power such discontinuities are generally quite small, on the order of 1%. However, in the case of the normalized polarized power such discontinuities may be large, on the order of two. Obviously, no physical significance should be attached to such discontinuities.

Bit Position "4"

Changes in the integration bounds are flagged for reasons similar to those given under bit position "3". The bounds, B₁, B₂, vary with the changing width and location of the polarized echo. Usually, such changes are very small and their effect is not noticable in the data.

Bit Position "5"

Changes in the unpolarized noise level, n, are made for the same reasons as those described under bit position "3". As before, changes in the unpolarized power, and especially the normalized unpolarized power, that occur with these changes in n are non-physical.

Bit Position "6"

The comments that apply to the polarized integration bounds given under bit position "4" also apply here.

Bit Position "7"

System gain changes may occur during data reception in the receiving systems or during data playback in the record reproduction system. Such changes are flagged since they will appear as a change in the polarized and unpolarized signal levels. Gain changes do not affect measures of echo bandwidths.

- 48. Antenna Gain is the gain of the spacecraft antenna in the α_s, β_s direction determined from antenna patterns contained in NAA (1966b) (116 cm), MSC (1967) (Apollo 14, 13 cm), or NAA (1969) (Apollos 15 and 16, 13 cm).
- 49. Not Used
- 50. Sequence Number, where the first data record=1.

Appendix VII

Cross-Reference Table for JM Doptrack/Integral Tape Trajectory Parameters

The table below provides a cross-reference between the JM Doptrack trajectory parameter records and the Integral tape data records.

JM Doptrack tapes are described in Appendix IV. That appendix gives the detailed format for those tapes, but does not define all of the trajectory parameters. Integral tapes are described in detail in Appendix VI. That appendix does include a detailed description of the various trajectory parameters. All of the trajectory parameters given on the JM Doptrack tapes are also found on the Integral tapes. This appendix provides a convenient means for determining the location of a given JM Doptrack tape trajectory parameter in the Integral tape format. For reference, the trajectory parameters are found in the sixth record of a data frame on the JM Doptrack tape (i.e., in record number N.6, N = 1, 2, 3, ..., where the first data record = 1).

1 1 2 2 3 31 4 30 5 28 6 34 7 9 8 35 9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	JM Doptrack				Integral Tape
2 2 3 31 4 30 5 28 6 34 7 9 8 35 9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	Word No.	is	found	in	Word No.
3 31 4 30 5 28 6 34 7 9 8 35 9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	1				1
4 30 5 28 6 34 7 9 8 35 9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	2				2
5 28 6 34 7 9 8 35 9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	3				31
6 34 7 9 8 35 9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	14				30
7 9 8 35 9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	5				28
8 35 9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	6				34
9 36 10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	7				9
10 3 11 4 12 5 13 13 14 14 15 15 16 24 17 25	8				35
11 4 12 5 13 13 14 14 15 15 16 24 17 25	9				36
12 5 13 13 14 14 15 15 16 24 17 25	10				3
13 13 14 14 15 15 16 24 25	11				4
14 14 15 15 16 24 17 25	12				5
14 14 15 15 16 24 17 25	13				13
16 24 17 25	14				14
16 24 17 25	15				15
	16				24
	17				
	18				33

JM Doptrack Word No.	found	in	Integral Tape Word No.
19			32
20			26
21			27
22			29
23			22
24			23
25			16
26			17
27			18
28			6
29			7
30			8
31			10
32			11
33			12

Units and scale factors are identical on JM Doptrack and Integral tapes.

Appendix VIII

Matrix Correction Factors

The tables below give the matrix correction factors (c-matrix) that were applied to the 116 cm data in Subtask 5 (cf text). No corrections were applied to the 13 cm data.

In all cases, the following values were used for \mathbf{C}_{12} and \mathbf{C}_{22}

$$c_{12} = 0.0 + j 0.0$$

Only \mathbf{C}_{11} and \mathbf{C}_{21} were varied. Start times shown below refer to the time on the first frame to which the particular c-matrix was applied; the same c-matrix was used on all succeeding frames with times less than the next entry in the table.

Apollo	14
Tir	ne 1

C	-m	2	+	r	4	×
-	-m	a	L	T	1	

Time UT2 (sec)	C-matrix	
start	c ₁₁	c ₂₁
23/38.35	1.100 + j 0.0	0.0 + j 0.0
25155.63	1.960 + j 0.0	0.050 + j 0.200
25166.28	1.230 + j 0.0	0.070 + j 0.150
25168.94	1.100 + j 0.0	0.0 + j 0.0
25190.24	1.200 + j 0.0	0.0 + j 0.07
25192.91	1.960 + j 0.0	0.050 + j 0.200
25198.23	1.200 + j 0.0	0.0 + j 0.070
25206.22	1.100 + j 0.0	0.0 + j 0.0
26348.41	0.929 + j 0.0	0.189 + j 0.0

Apollo 15

C-matrix

	c ₁₁	c ₂₁	
all data	1.000 + j 0.0	0.0 + j 0.0	

Apollo 16	
Time UT2 (sec)	C-matrix

C-matrix		
11	c ₂₁	
0.913 + j 0.0	-0.134 - j 0.045	
	-0.040 - j 0.010	
	-0.055 - j 0.032	
	-0.060 + j 0.020	
0.900 + j 0.0	-0.100 - j 0.050	
0.830 + j 0.0	-0.100 - j 0.040	
	-0.090 + j 0.0	
	-0.060 - j 0.050	
0.871 + j 0.0	-0.072 - j 0.490	
0.815 + j 0.0	-0.066 + j 0.010	
0.778 + j 0.0	-0.060 - j 0.040	
0.740 + j 0.0	-0.100 - j 0.040	
	C ₁₁ 0.913 + j 0.0 0.958 + j 0.0 0.944 + j 0.0 1.000 + j 0.0 0.900 + j 0.0 0.830 + j 0.0 0.870 + j 0.0 0.860 + j 0.0 0.871 + j 0.0 0.815 + j 0.0 0.778 + j 0.0	

These changes are located in overlap areas described in Appendix IV (D3). The change takes effect on the frame with the time (word 2, record 6; cf Appendix IV) closest to that shown here.

Appendix IX

Coordinate Transformations

A. General Definitions

r = specular point position vector

p = spacecraft position vector

v = spacecraft velocity vector

a_AH = vector in local horizon system

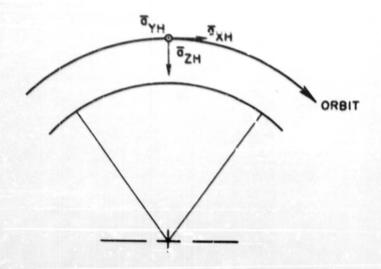
 $a_{\Delta V}$ = vector in vehicle reference frame

 $a_{\triangle P}$ = vector in primary or principal reference system

 $\left. \begin{array}{l} \emptyset \\ \Psi \\ \theta \end{array} \right\} \ \, \begin{array}{l} \text{defined in C below (Euler angles between local horizon and} \\ \text{vehicle systems)} \end{array}$

 β look angles to specular point in vehicle system

 δ orientation of vehicle along α , β direction (defined below)


B. Data supplied by MSC gives spacecraft attitude in "Local Horizontal" coordinate system.

Definition of "Local Horizontal" system (see figure which follows):

$$a_{ZH} = -\frac{p}{\sqrt{p}}$$

$$\bar{a}_{YH} = \frac{\bar{v} \times \bar{p}}{\bar{v} \times \bar{p}}$$

$$\bar{a}_{...} = \bar{a}_{...} \times \bar{a}_{...}$$

aZH is directed toward the nadir.

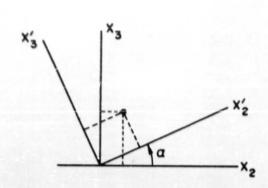
ayH is directed along angular momentum vector.

AXH is in the plane of the orbit roughly along v.

C. Specification of spacecraft attitude

The Euler angles \emptyset , Ψ , θ specify the sequence of rotations required to transform Local Horizontal coordinates to Vehicle coordinates as follows:

$$\begin{bmatrix} x_{V} \\ y_{V} \\ z_{V} \end{bmatrix} = \begin{bmatrix} \emptyset \\ (x) \end{bmatrix} \begin{bmatrix} \psi \\ (z) \end{bmatrix} \begin{bmatrix} \theta \\ (y) \end{bmatrix} \begin{bmatrix} x_{H} \\ y_{H} \\ z_{H} \end{bmatrix}$$


where the matrix \[\begin{pmatrix} (ang) \\ (axis) \end{pmatrix} \] denotes a rotation of (ang) about the \frac{\current}{current} (axis). Rotations are in the sequence (Y, Z, X). The \frac{\sense}{sense} \] of rotation is clockwise when looking in the + (axis) direction. For instance, consider:

$$\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} \alpha \\ (x_1) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$x'_{1} = x_{1}$$

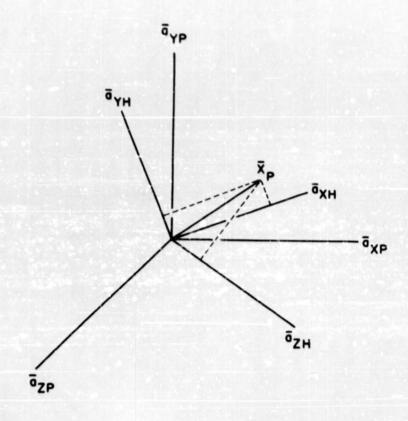
$$x'_{2} = x_{2} \cos \alpha + x_{3} \sin \alpha$$

$$x'_{3} = -x_{2} \sin \alpha + x_{3} \cos \alpha$$

then the transformation is

$$\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Thus


$$\begin{bmatrix} \emptyset \\ (X) \end{bmatrix} \quad \begin{bmatrix} \Psi \\ (Z) \end{bmatrix} \quad \begin{bmatrix} \theta \\ (Y) \end{bmatrix} = \quad \begin{bmatrix} R \end{bmatrix}$$

$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} \cos \psi & \cos \theta & \sin \psi & -\cos \psi & \sin \theta \\ \sin \emptyset & \sin \theta & -\cos \emptyset & \sin \psi & \cos \theta & \cos \emptyset & \cos \psi & \cos \emptyset & \sin \psi & \sin \theta & +\sin \emptyset & \cos \theta \\ \sin \emptyset & \sin \psi & \cos \theta & +\cos \emptyset & \sin \theta & -\sin \emptyset & \cos \psi & \cos \emptyset & \cos \theta & -\sin \emptyset & \sin \psi & \sin \theta \end{bmatrix}$$

Quantities that are known in the principal reference system may be converted to the Local Horizon system through the directional cosines connecting the two. These are given by the vector components of the appreciate the primary system. The appreciate form the rows of the

transformation (rotation only) matrix. Thus

$$\vec{x}_{H} = \begin{bmatrix} a_{XH_{1}} & a_{XH_{2}} & a_{XH_{3}} \\ a_{YH_{1}} & a_{YH_{2}} & a_{YH_{3}} \\ a_{ZH_{1}} & a_{ZH_{2}} & a_{ZH_{3}} \end{bmatrix} \begin{bmatrix} \vec{x}_{p} \\ \end{bmatrix}$$

Components in sub -H system are projections onto reference axes of that system.

E. Conversion of Reference Coordinates for Vehicle Coordinates

Conversion from principal coordinates to Vehicle coordinates may be

made by two successive rotations, principal coordinates —> Local Horizon
tal coordinates Local Horizontal coordinates —> Vehicle coordinates.

or

$$\begin{bmatrix} \overline{x}_{V} \end{bmatrix} = \begin{bmatrix} R_{VH} \end{bmatrix} \begin{bmatrix} X_{H} \end{bmatrix} = \begin{bmatrix} R_{VH} \end{bmatrix} \begin{bmatrix} R_{HP} \end{bmatrix} \begin{bmatrix} \overline{x}_{P} \end{bmatrix}$$

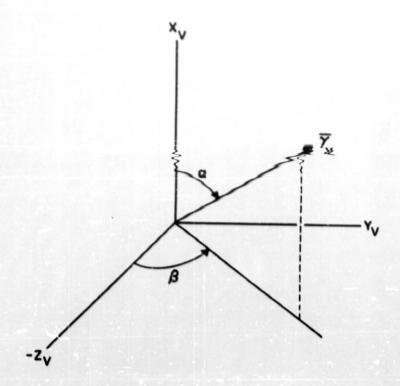
where R_{ij} implies a rotation from the j to i system. Thus $\begin{bmatrix} R_{VP} \end{bmatrix} = \begin{bmatrix} R_{VH} \end{bmatrix} \begin{bmatrix} R_{HP} \end{bmatrix}$.

- F. Computation of spacecraft to specular point look angles, α_s , β_s .
 - 1. The direction to the specular point from the spacecraft is

$$\frac{\bar{\mathbf{r}} - \bar{\mathbf{p}}}{\bar{\mathbf{r}} - \bar{\mathbf{p}}} = \bar{\forall}.$$

In Vehicle coordinates

$$\vec{\gamma}_{V}$$
] = $\begin{bmatrix} R_{VP} \end{bmatrix} \begin{bmatrix} \vec{\gamma}_{P} \end{bmatrix}$.

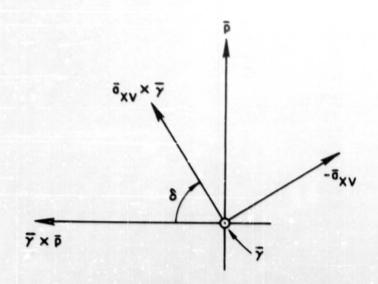

The quantity α is measured from the + X direction,

$$\alpha_s = \arccos(\gamma_{XV}), \quad 0 \le \alpha \le \pi.$$

The quantity β_s is the azimuthal angle (minimum angle to $\bar{\gamma}$, X_V plane) measured from the -Z_V axis, positive towards + Y_V:

$$\beta_s = \text{signum } (\gamma_{YV}) \cdot \arccos(-\gamma_{ZV}), -\pi \leq \beta \leq \pi,$$

where signum (X)= $\frac{X}{|X|}$. These quantities are depicted in the figure which follows:



G. Definition and Computation of 5.

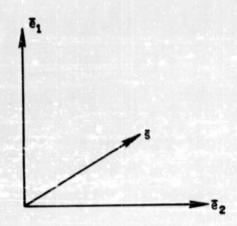
The angle δ is the included angle between the $\overline{\gamma}$, \overline{a}_{XV} plane and the plane of incidence, the $\overline{\gamma}$, \overline{p} plane (see figure which follows):

$$\delta = \operatorname{signum}\left(\overline{p} \cdot \overline{a}_{XV} \otimes \overline{\gamma}\right) \cdot \operatorname{arccos}\left(\frac{\overline{\gamma} \otimes \overline{p}}{\overline{\gamma} \otimes \overline{p}} \cdot \frac{\overline{a}_{XV} \otimes \overline{\gamma}}{\overline{a}_{XV} \otimes \overline{\gamma}}\right),$$

 $-\pi \leq \delta \leq \pi$.

H. Sources

Additional information regarding the definitions of Local Horizon and Vehicle coordinates may be found in MSC publications describing trajectory tapes (MSC, 1970). Input for α_s , β_s , δ computations are MSC supplied experimenter trajectory tapes. The principle reference frame is selenographic.


Appendix X

Relationship Between the Coherency Matrix and Other Specifications of Polarization

The methods used to estimate the polarization state of Apollo bistatic-radar data are those described by Tyler and Simpson, (1970). This appendix describes the relationship of the coherency matrix to the more common descriptors intensity, axial ratio and orientation of the polarization ellipse.

The coherency matrix is from Born and Wolf, (1959).

$$\bar{e}_1(t) = Re \left\{ E_1 e^{j\omega t} \right\} \bar{e}_1$$
 $\bar{e}_2(t) = Re \left\{ E_2 e^{j\omega t} \right\} \bar{e}_2$

$$\underline{J} = \begin{bmatrix} \langle \mathbf{E}_1 \mathbf{E}_1^* \rangle & \langle \mathbf{E}_1 \mathbf{E}_2^* \rangle \\ \vdots & \langle \mathbf{E}_1^* \mathbf{E}_2 \rangle & \langle \mathbf{E}_2 \mathbf{E}_2^* \rangle \end{bmatrix}$$
 where \mathbf{E}_1 , \mathbf{E}_2 are complex magnitudes associated with any pair of orthogonal linear polarizations.

$$\underline{\mathbf{J}} = \begin{bmatrix} \mathbf{J}_{11} & \mathbf{J}_{12} \\ \mathbf{J}_{21} & \mathbf{J}_{22} \end{bmatrix}; \quad \mathbf{J}_{i,j} = \mathbf{E}_{i} \mathbf{E}_{j}^{*} >$$

$$\underline{\varrho} = \text{Tr}(\underline{J}) \begin{bmatrix} \varrho_{11} & \varrho_{12} \\ \varrho_{21} & \varrho_{22} \end{bmatrix} ; \text{Tr}(J) = J_{11} + J_{22} = \text{total received power}$$

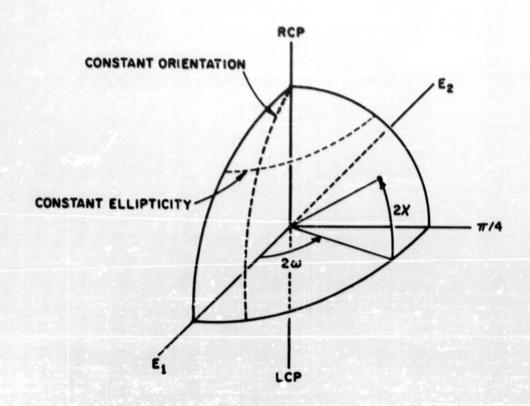
Born and Wolf show that the percentage polarization γ , i.e., the fraction of $\text{Tr}(\underline{J})$ that may be described by a deterministic polarization ellipse, is

$$y = \sqrt{1-4} \left(o_{11} o_{22} - o_{12} o_{21} \right)$$

Then any J may be written as

$$\underline{J} = \frac{1}{2} (1 - \gamma) \operatorname{Tr}(\underline{J}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \gamma \operatorname{Tr}(\underline{J}) \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}$$
unpolarized part
polarized part

where


$$q_{ii} = \frac{1}{\gamma} (\rho_{ii} - \frac{1}{2} (1-\gamma)) ; q_{ij} = \frac{1}{\gamma} \rho_{ij}$$

Ko (1962) gives the relationship between q and the Poincare sphere (Beckmann, 1968) as: (shown schematically in the figure which follows)

$$q_{11} = \cos 2\omega$$
, $0 \le \omega \le \pi$
 $q_{12} = \sin \omega \cos \omega e^{j2\chi} \Rightarrow \tan 2\chi = \frac{Im(q_{12})}{Re(q_{12})}$, $-\frac{\pi}{2} < 2\chi < \frac{\pi}{2}$.

Also note:

$$\tan \omega = \sqrt{\frac{q_{22}}{q_{11}}}$$
, $\tan X = \frac{M}{N}$, $\tan X > 0 \Rightarrow \text{right elliptical polarization.}$

For Apollo, a similar matrix J_c , where the sub-c designates decomposition of the incident wave into circular components, is used:

Defining $\underline{\rho}_{\mathbf{c}}$ and $\underline{q}_{\mathbf{c}}$ in an analogous manner:

$$\underline{J}_{\mathbf{c}} = \begin{bmatrix} {}^{\rho}\mathbf{c}11 & {}^{\rho}\mathbf{c}12 \\ {}^{\rho}\mathbf{c}21 & {}^{\rho}\mathbf{c}22 \end{bmatrix} = \frac{1}{2} (1-\gamma) \operatorname{Tr}(\underline{J}_{\mathbf{c}}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \gamma \operatorname{Tr}(\underline{J}_{\mathbf{c}}) \begin{bmatrix} {}^{q}\mathbf{c}11 & {}^{q}\mathbf{c}12 \\ {}^{q}\mathbf{c}21 & {}^{q}\mathbf{c}22 \end{bmatrix}, \text{ where }$$

as before
$$\gamma = \sqrt{1 - 4} \left(\rho_{c11} \rho_{c22} - \rho_{c12} \rho_{c21} \right)$$
.

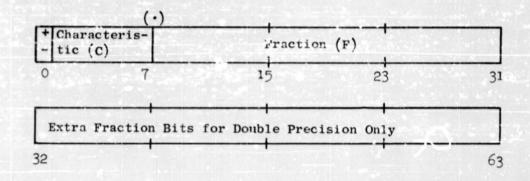
However, the interpretation of the $\underline{q}_{\mathbf{c}}$ is modified in accordance with the new definition:

$$\tan X = \frac{M}{N} = \frac{-\sqrt{q_{c11}} + \sqrt{q_{c22}}}{\sqrt{q_{c11}} + \sqrt{q_{c22}}}$$

$$\omega = \frac{1}{2} \arg \left(q_{12}\right),$$

where ω is referenced to instantaneous E_{ρ} position at time t=0.

The invariance of $Tr(\cdot)$, $Det(\cdot)$, and γ under transformations to circular coordinates can be verified by direct computation.


Appendix XI

XDS Sigma 5 Machine Images

All data on the JM Doptrack and Integral tapes are in the form of XDS Sigma 5 machine images. One word is 32 bits, one byte, 8 bits. The data are either real (floating-point), integer, or alphanumeric. The machine images are as follows:

A. Real

A single precision real number consists of a sign bit (bit 0), a biased, base 16 exponent called a characteristic (bits 1-7), and a 24 bit fraction. A double precision number consists of a single precision number followed by an additional 32 bits of fractional significance (cf figure below). Unless otherwise noted, all numbers referred to in this report as "real" are single precision.

The bias value of 64_{10} is added to the exponent to make it possible to compare the absolute magnitude of two numbers without reference to a sign bit.

A real number (N) is defined as follows:

N = F X16^{C-64} where
F = 0 or

$$2^{-24} \le |F| < 1$$
 (single precision) or
 $2^{-56} \le |F| < 1$ (double precision)
and $0 \le C \le 127$

A negative real number is the two scomplement of its positive representation. (Note that this differs from the IBM 360.)

- B. Integer
 Integers are written in full-word, two!s complement representation.
- C. Alphanumeric
 Alphanumeric data, strings of characters, are represented in Extended
 Binary-Coded-Decimal Interchange Code (EBCDIC). Each character
 occupies one byte (8 bits), so each word of alphanumeric data contains four characters.

References

- Beckmann, P., The Depolarization of Electromagnetic Waves, The Golem Press, Boulder, Colorado, 1968.
- Blackman, R. B. and J. W. Tukey, The Measurement of Power Spectra, Dover Publications, Inc., New York, 1958.
- Born, M. and E. Wolf, Principles of Optics, Pergamon Press, New York 1959.
- Howard, H. T. and G. L. Tyler, "Ristatic-Radar Studies of the Lunar Surface," Apollo 14 Preliminary Science Report, NASA publication SP-272, 1971.
- Howard, H. T. and G. L. Tyler, "Bistatic-Radar Investigation," Apollo 15 Preliminary Science Report, NASA publication SP-289, p. 23-1, 1972.
- Howard, H. T. and G. L. Tyler, Apollo 16 Preliminary Science Report, NASA publication SP-315, p. 25-1, November, 1972.
- Ko, H. C., Proc. IRE, pp. 1950-1956, September, 1962.
- Tyler, G. L. and H. T. Howard, "Bistatic-Radar Observations of the Lunar Surface with Apollos 14 and 15," paper presented at Third Lunar Conference, Houston, Texas, January, 1972.
- Tyler, G. L. and D. H. H. Ingalls, "Functional Dependence of Bistatic Radar Frequency Spectra on Lunar Scattering Laws," <u>J. Geophys. Res.</u>, Vol. 76, No. 20, pp. 4775-4785, July, 1971.
- Tyler, G. L. and R. A. Simpson, Pistatic-Radar Studies of the Moon with Explorer 35, Final Report: Part 2, Scientific Report No. 3610-2, Stanford Electronics Laboratories, October, 1970.
- Tyler, G. I., Estimation of Polarization with Arbitrary Antennas, Scientific Report No. 3610-1, SU-SEL-70-064, Stanford Electronics Laboratories, October, 1970.
- DSN, 1970, Operations Plan for Apollo 14, Vol. VI, Report No. 609-37, Jet Propulsion Lab., Pasadena, California, 15 December 1970.
- DSN, 1971, Operations Plan for Apollo 15, Vol. VII, Report No. 609-38, Jet Propulsion Lab., Pasadena, California, 1 January 1971.
- DSN, 1972, DSN/Flight Project Interface Design Handbook, Deep Space Network Standard Practice Doc. No. 810-5C, Jet Propulsion Lab., Pasadena, California, 1 April 1972.
- MSC, 1967, Full Scale Block II Command and Service Module S-Band Omni Antenna Patterns, MSC Report No. 67-EE-15, Project Apollo, Manned Spaceflight Center, Houston, Texas, June, 1967.

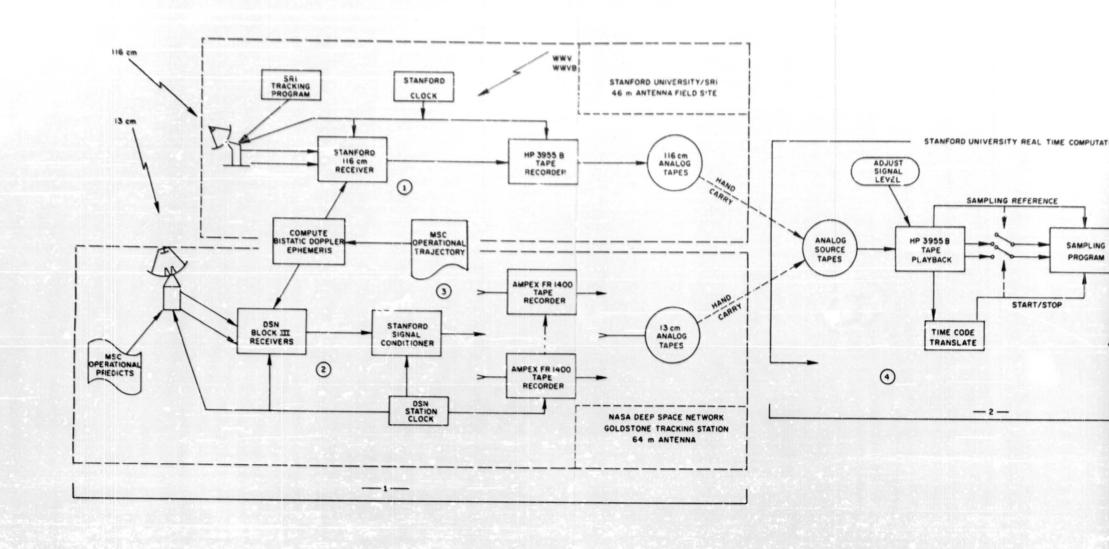
- MSC, 1970, "Apollo Postflight Trajectory Parameters," MSC Internal Note No. 70-FM-21 (MSC-01564), Manned Spaceflight Center, Houston, Texas, 13 February 1970.
- MSC, 1970, Bistatic Test Data Package (VHF Spectrum and LM S-Band Interference)," MSC Report No. MSC-EE7-70-115(u), Manned Spaceflight Center, Houston, Texas, 18 December 1970.
- NAA, 1966a, Radiation Distribution Plots of Linear Polarization Data Types, Report No. NAA 66H-343, North American Aviation, Columbus, 20 April 1966.
- NAA, 1966b, VHF SM/SLA Scimitar Antenna, FDWA M 6547, Second Pattern Report, 2 Vols., Report No. NA 66H-31, North American Aviation, Columbus, 1966 (no further data given).
- NAA, 1969, High-Gain Antenna Equipment Characteristics and Operation 106 and Subsequent S/C, Report No. TDR 69-042, Revision 1, North American Rockwell Space Division, Downey, April, 1969.

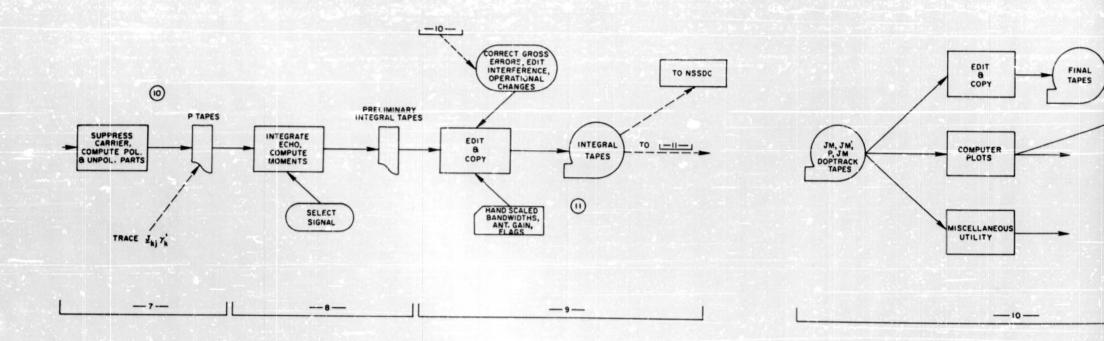
NOTES

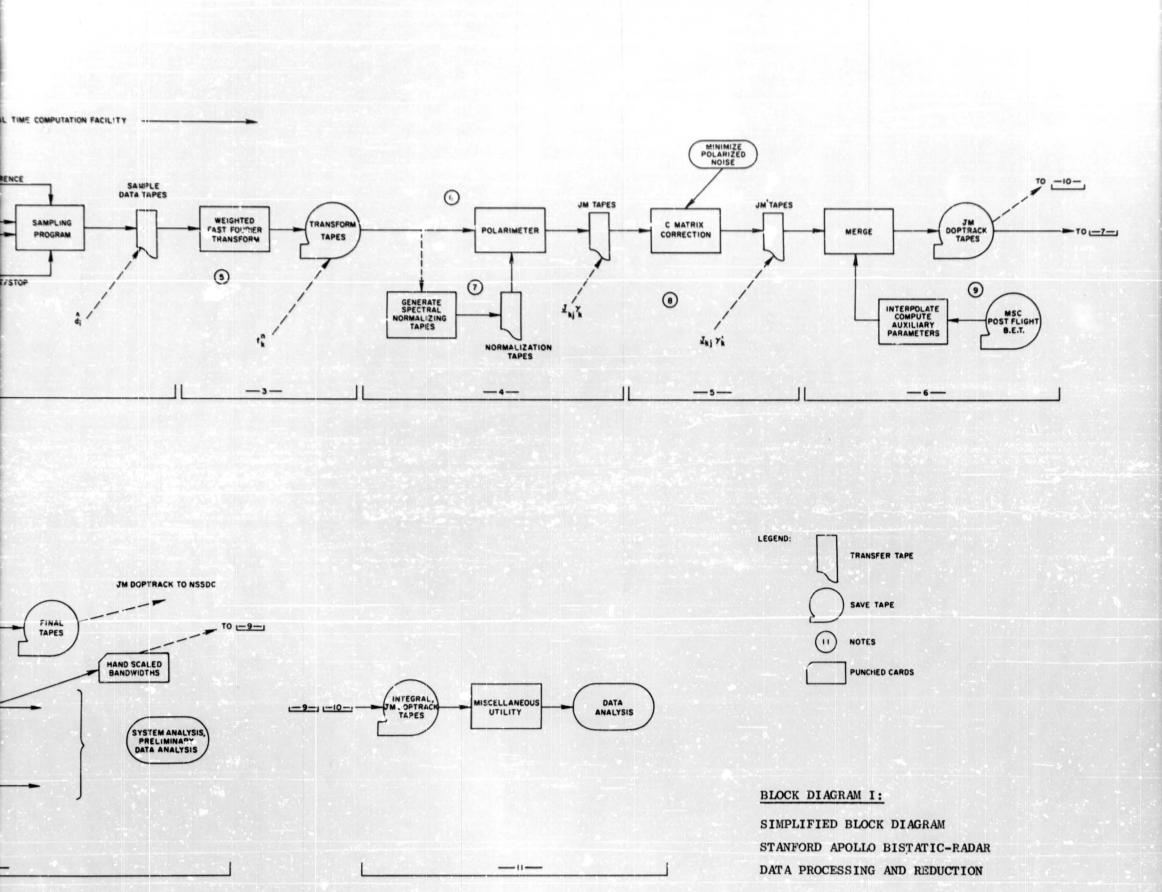
Block Diagram I: Block Diagram of

Stanford Apollo Bistatic-Radar Data Processing and Reduction

- (1) a) Receiving system described in Appendix I.
 - b) Critical filter response given in Appendix III.
 - c) RCP, LCP, coherency maintained through entire system.
 - d) Antenna pointing maintained toward center of moon using Stanford Research Institute lunar ephemeris.
 - e) Absolute phase in LCP, RCP channels not controlled, relative phase maintained.
 - f) Spectral purity of downlink signals measured for Apollo equipment type (MSC, 1970).
- (2) a) Deep space network station under NASA control, used standardized procedures except as noted.
 - b) Apollo operational system used for 64 m dish pointing, closed loop receiver acquisition. Station configuration for bistatic-radar experiment described elsewhere (DSN, 1970, 1971).
 - c) Absolute phase in RCP, LCP not controlled, relative phase maintained.
- (3) a) Stanford Signal Conditioning Unit provided critical control over system frequency response. Filter characteristics given in Appendix III.
 - b) FR1400 tape recorders A, B used to provide continuous data across tape changes.
- (4) a) H.P. 3955B frequency response adjusted for a maximally flat frequency response on playback using calibration tapes from data source machine (H.P. 3955B for 116 cm data; FR1400 A, B for 13 cm data).
 - b) Coherent sampling maintained. Reference signal from tape used to synchronize samples.
 - c) Actual time recovered by use of time code translator clock output to establish start times. Time from start maintained by counting sampling pulses.


(4) d)	Actual sampling rates: (cont.)			Ratio of Effective Sampling Rate to		
	Flight	Wavelength	Sampling Rate	Actual Sampling Rate		
	Apollo 14	13 cm	10.75 kHz	14		
	Apollo 14	116 cm	10.00 kHz	1		
	Apollo 15	13 cm	10.75 kHz	14		
	Apollo 15	116 cm	10.00 kHz	1		
	Apollo 16	13 cm	21.5 kHz	2		
	Apollo 16	116 cm	10.00 kHz	1		


- (5) a) Fourier coefficients computed from successive groups of weighted data: data group length either 1024 or 2048 samples, weighting function is $\sin^2 \left(\pi t/T\right)^T$, where t is time and T is duration of sample group length.
 - b) Data analysis lengths


Data Source	Sample Length	Analysis bandwidth (Hz)
Apollo 14 S-band	1024	42.0
Apollo 14 VHF	1024	9.8
Apollo 15 S-band	1024	42.0
Apollo 15 VHF	2048	4.9
Apollo 16 S-band	1024	42.0
Apollo 16 VHF	2048	4.9

- (6) Polarimeter computed elements of signal covariance matrix (see Subtask 5).
- (7) a) Normalizing data obtained from data runs employing noise input. Purpose was to compensate for variations in receiver passband.
 - b) Normalizing tapes contain smoothed power spectra from noise source data.
- (8) a) C-matrix correction was polarization coordinate transformation to correct for errors in receiver antenna system. Applied to 116 cm data only.
 - b) Criterion for choosing c-matrix was to minimize polarized part of system noise.

- (9) a) Merge combined data tapes with geometrical parameters obtained from MSC (Best-Estimate-Trajectory) Post-Flight tapes.
 - b) MSC data are interpolated to center of data averaging window.
 - c) JM Doptrack tapes constitute primary data source for analysis.
- (10) Carrier suppression deleted direct signal from the data by means of an empirical algorithm (see Subtask 7 and Appendix V).
- (11) a) Tapes edited for changes indicated in operational logs and interference.
 - b) Handscaled data added to tape from card source,
 - c) Edited integral tapes constitute reduced data records.

D-11596

APOLLO 14, 13 CM BISTATIL DAY 37

80,609|<u>1,4</u>40 E 4 D 5C 9E 5 4 DC 1 D 7D 6D 3D 3D 6 40 F 1 F 4 40 C2 C2 60 E2 E 3 C1 E3 C9 C3 40 D9 C1 C 4C1 D9 4U C5E 7 D 7 40 4 DE ZF 1P 7P 05D 4D 6D 7 E3D 9C 1 C 3D 2 4 0E 3C 1 D 7C5 4 0C 6C 9D3 C5 6 7 4 0 F 1 F 3 4 0 C3 D 4 40 C4 C1 E3 C1 6 1 C7 C5D5 C5 D9 C1 E3 C5 C4 4 0 F 2 F 1 4 0 C 6 C 5 C240F1F9F7F361C74BD94BC4D6E66BE2E3C1D5C6D6D9C447E4D5C9E561C3C64B40E2E3C1D5C6D6D9C44QE4D5C9E540D9C5D7 0609E340E2E440E2C5D3F7F360F0F0F6404000000025000007B346253F1CB0000000006253EF8B24DD2F14125B8A5D00020EE 95A42AF06H002E4F32002AF36930264F32501EC5224FFFFF3A200002C7442AF16H00264052501EC752402A71254012783A20 0002CT442AF133102A7132002A71210001006910261622902DB2680026316A8028A772321E926A80295B32002AF368302654 2202AF191A42AF06830264F6420266015A02DC004101CDC33102A69680026546A8028F632002AF36830261632002A7932E0 000F48E01EB235E02A7938E0000025F0007E3200000F38002AED6810267522902DE06800263135F02AED66002AEF25000002 3000000E3A00000066002A80692026166A8028BE680026166A8028A772421E926A8028A772521E9221500020682026862290 2DE7630026316A8028F632002AF3683026163A20000E25F40000220FFF0130400003A40000432902AEF3200000425000078 38900000 4B40 1EB83220 2A 7925200 00 3382 00 00 4 6920 26 9920 9FFFFF 20 20 00 20 38 20 0 0 0 56 8 10 26 9D 22 90 2DE 76 80 0 26 31 30 20 0005202FFFE03A40000232301ED23A600005253C0401253A00604BF0000325F8000025380000B22000093020000FC7200009 30406800268632E0000F22F7FFFC7E42AF16800261632002A78683026C022902DEF6800263133102A786A8028A772021E92 48001E8735000002223000026A8028A772021E922520000830200000643026C62020000748201ED066202A7A680026163200 2478683026D322902DEF6800263132002A71210000FF6810265835002A7C33102A71680026C06A8028F632002AF369302616 25F0007EB2002AF2693026E135F02A97680026162220000AB5F42AF2680026166A8028A772221E926A8028A772021E922520 0008302000002020000235202A6E35102A6F68002616212000C06810272748201EBA224FFFFE32002AF3693026F822200004 6A8028A7642026F568002616212000006830272431202A7C683027242520027832301EC7BA502AF1C52A2AF1683027046550 26FF229000006B002706B29A2AF14B901EC4259B0000223000006AB02BA772021E927506000A20300001213000046910270B 3220000A302000092237FFFF2538000C4720000A3A302A796830271D22U0000035002A7933102AED33102AEF213FFFFE6830 271C48301EB166302A80B5A02AEF33102AED33102AEF33C02A80692026166A8028BE6800261632902A782590000268002706 222000 00 6800 25F 1 48 20 1EB 72120000 8691 0262C 21 20000C 681027 33 4 820 1 EB 2 3 A 4 0 0 0 0 26 A 8 0 28 A 7 7 2 2 2 1 E 9 2 6 8 0 0 2 6 F 2 6 A 8 0 28A7680027274B201EB7(930273820200010329000023230247930900036A8028A772021E9233002AF368302740F5062AEF 2030000133F02A806420273B32002AF3683C26164B301EB235302A792590007E66902AED66902AEF32002A80692026166A80 288E680026166A8028A732002A7A2500007E30002AEC35002A7872102A7433002AF36930275873122A746800261438002AED 66002AEF 66002AED250000023A00000066002A80692027606A8028BE33102A7732002A7771022A74693026146800276C6A80 28A772321E926A8028A7643027676A8028A76A8028A76800261673102A7432002AF369302818B2002AF2693027CD35002A99 22202A9932802A7A32902A7A2590007E32002A924B001EC33090000032002F4E6830278535902AFC2080001C209000073310 2A9912402AFA354400013554000232002AFC3504000320200003B2302AF16830278E92462AF052000004210FD47A683027BA 210FC57A683027BA64302787353400013534000232302A996830279823300003203000135902AF630900003253000023080 100332302F4E683027A03E902AF52330000B20300001309000032530000230800003209000014B901ECF35902AEC35902AED 5902A7835802A93323000062530007E2220000036202A6C21200000683027AD2030000166302A7EB2002AF2200000013100 2F4E692027DC21000001683027862210000B66102AF2B5002AF22200C00035002A7A6800261533102A9932C02A992100001C 691027C322902DCA6A802D2C33F02A99223000006800278E35440001355400023A300003B2062AF13A3000Q34B001EC32500 007E35040003202000036860278D32102AF232002AFG30002A6D3502000132002AEG3502000535002A7832802A7A35820006 31802A70682027D935802A7032002A7E35020007680027A633102AF32200000175002A7432002A7030002A93200000032500 907E35002A9830002A9225000002221FFFFFB5022AF132002A924B001EC335002AEC35002AED35002A7822002A9235001D31 2200016835001CDA2210C00035101CDB320C2A92692027F646102A9904101CD632100001683027FA35102A9982002AF12000 00012500000130002AF035002AEE35002AEF35001D318A102AF1201FFFF330102AF138102AEE36102A6C6830264435102A81 37 10 2A 6C 201 0 0 0 0 8 2 5 1 0 0 0 0 2 3 5 1 0 2 A 7 F 3 5 1 0 2 A 8 0 2 2 0 0 2 F 4 F 3 5 0 0 2 A F 2 3 3 1 0 1 C D B 3 2 0 0 2 A 6 A 6 8 3 0 2 8 1 4 0 4 1 0 1 C B 2 6 8 0 0 2 8 1 5 0 4 1 0 1CB122000000

DC 1D 7D6D 3D 3D6 40 F

0000000000000000000000000004116A4004117C672411E5482411B627F41181ADB411C1E3E411B56C74119492741185D0E411788BC 411777AF411ACA294116BFD141153835411B38D5411ABE25411C6091411B4AC44117509541172DAB4116A7D941182DCD4118 3586411577794118758C411ADD9B41198A1F41161284411435EF41177ACC4118232A411287E941191CA44115B7F9411A272B 411B349F411874F9411AE25C411737FE4117526A411A00034119748F4118581D4118F738411EE5964119D3F84118 6DC5411B D536411E62564116A48E41164462411CC8F1411B589E411B5914411A6710411994E741181374411B9CD4411DD73A41219AC1 41 1F7A4C411DBC6A411CCC2B411A8C12411C6EC9411B23894117D78E41176746411C2C6B411A639E411C7B5C411B640E4115 E20841 19E51E41192EF6411B210C411D1105411EB231411D36A7411E1EB241195E15411A3E27411B40FB412036C0411A0F2B 411C1CAB411BFE394119E27D411E84BE412C7F76411C0A23411D1164411E26F9411F4021411EAF7A4122B9A44121337D411F A175411FFF42411C027E411C51F641215E0B411C8C44412206EB4122ACA441207330411FAA76412224CB41257B394123A268 411F37D541204E72412470D34122C2CE412AC5754125EB0E411DBAC8+11F4F25412011694124494949411F97A5411C2F214122 E742411FE63B411B14AB411756274116F73B411CFA7D411F515C411F3C00412205C84123B63B411C3C2A411C74C8411F2431 41231847412571A9412278CF411AA38C4119F087411D24AA4122D9D5412325234120941C412521F8412252C0412156864128 562541277D16412526C341296D62412241AB411DAFB6412838A24126BAD64128837A41289E6E4126F1774124E47341287350 2558F541254BCB4129AD764128B01E412B46F04129D162413D02DE4131A8954136F1F0413306FB413371AB413329224133 BFF41396272413CCD68413AEDCD4134E9CF4137D225413E6648413C25A5413938EA413B7CDC413E52F0413FCB33413CA76E 414130 1F 4138486E4132D004413F1B6A4149CA71413BF4254135D1F14138D571413CCB92413D8EB3413A9O0341447B5B4132 BF4441326A0E41347A87412F97434133BCF44138CB44413AFBE241344C25413332B84136FD96413C5CA6413753844131E5F9 413D186F4148FF09414164834137C7A94135D6D4413AE2104135759E41361C09412FCE0D412C6777412F2DFA412E14AB4131 OCD6412DE003413164A44139EA5341369ACE412D7F62412B1CC9412E89C3413123EE412CA4414126EEAF4122FF42411FA809

REC 2. LENGTH 2056

41241E5041290FFF41200B6C4128E4424123B777411C7529411C27DE4125498B4128EAF5414C98E742E0EF7F43EGA8E443AA 32AC4241C1914130E801411CA781411D08A 8411BB122411E2429411FE2774120F4D94123CA36411F0D32411FF84741204E19 411A2F2A411D4579411E 176241182992411C068B412201954122B49B4120A5124124049D4123D0ED41201B5D411EA841411E 71E84120A91E4120A47D411DAF68411DA42C41191C71411C14AE4125322841237F0B411BAF8C412245F9412465B341201393 4122E169412068EE41203AED4122E9BC411AF014411855004118DA6741182275411D0389411F4B94411C6A78411868504119 4467411E0AB4411EF3F7411A2F43411B242F411A9D27411DFAC2411CF245411B96D9411C58DF411B5B42411DF50B411F9B99 1 1D0768411B980C411CCF53411A8AE74118BBF9411D1117411F4768411B5AC941189FCC411AC5C041159E8F411784EA411A 0 3841 197E5341:16EA9E41175ADD4117F6D34117DF5141155F8841147535411394524116ACF541156DEA411458C54115550C 4114C9F64113A80A4113C0654111E01D4113760941154FF84113C16D4113881C41171DD741170F2F41134686411454E44113 8AF8411640A7411581364115FF554116B46041142B054113E652411483624119C1F841133AA54117997E4116A52A411C2DE3 411828A6411677C84113C9C94113E8C0411473434115206341169A8C4117847141187F744113B63541145D324114E9E94112 C5F44112C5094:120EAA 4116F94F41171008411536344115 C9E5411495CC411287C7411538A14117382C411466124115F24D 4115DA8941158907411AA76741189E2741156C4F41161E554115372D4114C02E4!16442B4115A916411794E741156BEF4114 4754411523E74114DA 20 411901784117DB 4 6411616 9141159E884115696A411601544116F9354117BEA5411421154110F517 4111ECDF4115D0A54117C3604117AA364114983F4116ED494114519C41197A68411933E14112D88141116F6E4113FCB14111 E97A41112A8841140F224116726941163B034116BC1741138D5A4118378B411848A94114881B411365664117A8A14114B2F4 411462984115523A4116 E42B411367844114BC534119B6EB41150224411614EB4113FA3841134B144113D4304115B7EA4118 3861411707E841162956411797184114846A41159A524117548641199E634116CEC34114DF994114DACA411519124116C338 41124CCA41115C8D411676E84116A7E741132C9E4114A685411337C3411748124113707241127EC541158E4B41174AFE4118 836C4116E58741156ACF41155D0441154C724115A5084114598B41140A18411461F44116B39C4117858E4113ABDB4110D17B 411360CC4113D5DB41128E264115EB4A41168B9441150EEE41145F404115E4C44119626D41175BC84113561B4112A9824116 4F1441100000

512D4122DC864124B4D34124F2AF4129B1F 8412154454123 FADE4120 EEC7412218C34127D593412B2615412B10554129E011 412924C14124B73341262AF24125E0284125A3834128ACBA4128C5144125360A4125DACA412A23FB412B21EA4127C6AE412C FC3841298E41412E04CD412A67FA4129255C4129038C412BA22C413290D3412AB910412CFF7C4127A1A841267A58412D6C16 412FE7EB4134271B413073B6412884BD4127EDCE412BF34041288A1141304E5A412FA3CA412ED6984133DD73412F81174121 ADCF4125980C413310184135D9294137A446413B58EA41342BCF4132251B412F3EB1412CDE874123F89B412CBA3F4137C4CD 1350F3541380E594134B5E3413BF97F414532**0D413F05**82413D4DAD413B8C9B413D91CC413A6B69413CB04A4140B95E4143 DF04149A9B841494137414C8F32414ED9534141BCED413E27E1414520B1414864774141ED02413432964144B3D9413FBC93 4136419' 41408D454141FC5E413A6AD641518C58414964EB4144EF7D414CBC5E413F349F414A637641498B224146444B4144 45424134F303413738804138BF75413E884B414059AF413F8E7C413CB0B5413D1386413A34C2414678884144DD2D41495A87 414C729C414CC42F414554EC414C82A341483B364149460541573E534150CBCF414675FE4150C4C8416330DA4154DA064155 DC9A41637430417014804179B049417BB55A41651A57415F489C41499E1B4150758D4157BC4741602D71416DF393417056AD 41676D724168E395415FCCE0416194D94174EAED41736CC3417C3F1B4187F78B418F90894183E5AE417CB85041867C214190 4BA141969EBD419CCF74419A9DAA41857F66419A6C1041A12530419FCC4241A3D68041AD110141B0D87941CB654641BBB955 41CC5C3B41B2F3F741CB9DA941CDB15041EB692341F0311041F11CC841E4AF5141DD311A41EA32B241F4BEEB41D444E841C5 1C7E41E1079341D020B541CBA70941ED935101F41ED041F045B041FCE80E41F21E9C41FA5FE441FABC3E42107F004210AC54 4212917A4215308D42137C144212F7DD421102EB41FAEA884210703B4211359C4210A4E741D64D7441FDC0D74211A7D24211 371942128A214212243F4213091742123309421003B3421311F7421461224212363942131F9A42126BBA42122DD74214D798 421612BB 42128EEE 4214 74A 6421 76BA 8421 5F CF 44216C44B4214 A7D24215AC1B421516 3E421783AB4313BAE44413190943E3 48 A6 42 60 55 DB 41 F2 E8 07 41 B 45 5 A 641 A BC1 E C41 8 D 2 D D 441 8 B 0 D C 941 A6 E A63 41 9 4 E 6 0 E 41 9 0 8 60 3 41 A 65 8 C 4 4 1 9 3 F A 7 1 4 1 B 0 E 2 B 7 41A332F841B0FCDD41CC2EB041DF81C041D52B4841D04DF741D5E47E41B62C67418F452F41A528DD41A298A141A5AF4641B2 7B64418D5349417FDE4241868B0241A5D245418C6D19418A546141AF409E41E07ABA41C680B741BC6EA841A9312641BD9BFD 41C29AD141A1709441AFA0F841D20FF141BEC09641A0FC0841906FE4416E6C9A4164AFA241667E1241888BCC41774813415F 31F6415BB56A4166E0794154EFBE4155509C414611FE413CF204413BD14F41402BA2413D5D10414A4C4A415171E24140A910 41383C43413D19BB4140 SEFB41434036413D259141317FE0412U5BFD4130 A8064129C44741331FC441301D0F412A3DAD4126 94554124F23B412AE7BF 4122440E4120E5874120129941313C304120D079411E710A411E1975411BF612411BC6B7411AF7DA 41243A554123F427412326B6411F2038411AC8BE411BB9CB411EB5AB4127289B412786C241238572411D7AFB41218B63411F F81F411FA5BB412149974123B9E241254A81412048C9411B3E43411E143241213603411FD3F3411F134A411F57734122123D 41215968411ACC13411C43BE41208D2E412181FD411FC075411E8268411D1884411CC6DE411841744120D71741218DD2411E 44A94119EF3541217BA141221F9C411EF8DC4120026E411DEBF2411F8EE6411C269B411F6E95411D6DE4411BD72E411B7753 411FEB03411D54EA411EC512411D82714120DD0741278CB0412545734120B6A1411B50354119942C411EF56941224A40411D CC7741 1DA97141218250 41 1B0B0D41 1D49C 94121 D76541 1EEC5041 17 2 1D141 1 A770 541 1C46C241 1D5EA941 1DEAE341 228907 1222348411EFE3B41202D2B411EA6EE411FDA764119A93C411A441D411D16D1411FA6E5412211DF411A97D2411C242A411C 57941228E08411BC4A8411AFB6D411D810441217827411E5A7C411D2E0D411FEA2741209A1C411BE58F4119E2B841174892 411C38E541237F4E411FDC3A411F4347411C1DA8411BBD1A411CD467411DC137411CC11E411F5FEE4120A1084120F2B1411B F15D411D6C2C4125B2F7411C55C4411B95CC411EE731411CE1D5411B8 AD74119E0 4F411B2E064119D2DB41186AB3411C447C 411E5B8A 4122431C4121 4F0E41216D68411CDC304119FBB7411BC8 AA41192E96411C0369411A6A09411CE2DB411F2A 48411D 41D2412241EF41219BEE 411C2A 0E412206B 54128D4 9041235F15411C5912411B A3B6412125C04124 ACDD411D13BF41199C6C

REC 3. LENGTH 2056

06E640FE77813FE53F104270A52ABFDF8582BD739B314287493DBDC8124942AD5B784270B011BDCAD715412898724260887B				
41A0000044122Z64BFE2DCAF40FE151B3FB5BD3040FADDAE401F66E3BFD7CC8643658CE140FE39AA4019D66C3FF6C7504018	the state of the s	11. LEN	GTH	200
4133AD244254AF24424EB86D434034EC432D1970BCC1AA30443272DC4371BD2D427511A941143DF15881F50C441549A144A3				
ADFD40FE7E693FE6C5004270BF 9ABFDECAB6BD73 961842875B6CBDC8287442AD5C0E4270E781BDCAD70E4128E46D4260A68C	REC	10. LEN	o i n	200
4190000044122009BFE256D140FE04A43FB711D040FACD86401FEEAEBFD7D2A543658D0F40FE39A14019D7223FF6C4904017	REC	10. LEN	GTH	200
3F64427664034299C118431E0964411F99154125D6D044261239413D3A6A0000000000000000000000000000000000				
568840FE85233FE34B704270DA16BFDE1088BD7390F6428769D5BDC8104442AD49CA42711EFBBDCAD7024129305D4260C49E 413404A94254C2CC424ECBDB43401EDC432CBD5BBCC1E080443276494371C30E42750E5641141C6F5881F49544170ACD44B1				
4180000044121DADBFE1D20640FDF40F3FB8666040FABD3940207561BFD7D8D343658D3E40FE39A84019D6C53FF6C1D04017		9. LEN	GIH	200
41 8000004 4 21 DAN BEET DED 4 0E 7ED 95 66040 EARD 76 4 02 75 5 1 02 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	DEC			200
685742796742429DAAAC43225D5C411CD593412237314426028241469DD60000000000000000000000000000000000				
41 345C384254D6A1424EDF3E434008C5432C619ABCC217F0443279BB4371C8DA42750B434113FAF05881F4274415C35344A7				
41700000441218528FE14C4940FDE30E3FB9BAA040FAAC844020FD03BFD7DF0B43658D6U40FE39974019D75E3FF6BF004016 FE5140FE8BD43FE9D2204270F49EBFDD56F8BD738BCA42877C28BDC8268842AD4A674271567FBDCAD6F141297C454260E2B0		8. LEN	GIH	200
		N . 4 CA	G.TH	200
413463CC4254RA62424EF2BA433FF2B2432C05AABCC24EE044327D1F4371CEC4427507EF4113D9695881F3804415D3A544A7 E60042749ECF4297747A431EBB03411F950D4125B47A44260EC8413FA9F100000000000000000000000000000000000				
66940FE923F3FEB58B042710F32BFDC9E06BD73869542878B0DBDC80FAF42AD387142718E0FBDCAD6DA4129C822426100C2				
41600000441218F5BFE0C78C40FDD1E53FBB0ED040FA9BA5402183A8BFD7E54C43658D9D40FE39A84019D7033FF6BC304016		7. LEN	GTH	200
0A59426ADAF44284C5E9431C2EAC4121FE5D412847D34426102F413ADC4000000000000000000000000000000000000				
413508944254FDF0424F060F433FDCAA4328AA8BBCC28680443280754371D4A14275049B4113B7E35881F3384416E2A044B0				
4F6440FE98873FECE040427129D2BFDBE5B1BD73815642879BCFBDC8107A42AD30174271C5AABDCAD6BE412A13F642611ED5				
41 5000004412169BBFE042D240FDC0793FBC62C040FA8A8140220A48BFD7EB9C43658DCC40FE39AF4019D6A83FF6B9604016		6. LEN	GTH	200
EB4A427293414294CC89431CB735412217F9412A005F44265E64413C770B0000000000000000000000000000000000				
41356348425511B4424F1952433FC6A2432B4FE2BCC2BEB0443283CE4371DA82427501894113965E5881F2C84419145944C0				
F7704 0FE9EBC3FEE67704271447EBFDB2DFABD737C0E4287AE6EBDC8267342AD30A74271FD4FBDCAD69C412A5FC142613CE7				
414000004412143F3FDFBD2240FDAE9B3FBDB67040FA78F3402291D9BFD7F1F543658DFC40FE39A64019D7443FF6B6B04019	REC	5. LEN	GTH	200
417A4270B34C42925D374318EE444126DB26412D6E47442614E34134EDFC000000000000000000000000000000000000				
41358B1542552554424F2CB5433FB098432AF4E8BCC2F7B0443287234371E0664274FE76411374D15881F25B4419A4AC44C5				
A02040FEA4D33FEFEF2042715F37BFDA76E2BD7376BD4287BD7EBDC80F4742AD1E49427234FFBDCAD675412AAB8242615AFB				
41300000441211E4BFDF387540FD9C953FBF0A1040FA67424023186BBFD7F85943658E2B40FE39AD4019D6EB3FF6B3E04015	REC	4. LEN	GTH	200
E091426E930C428F9A66431941864124B86B412B0CF844261B9C413610AF00000000000000000000000000000000000				
413612F24255392A424F400E433F9A94432A9A4DBCC3304044328A664371E63A4274FB22411353495881F1E34417839844B4				
47D440FEAABB3FF 176F 0427179FCBFD 9C 056BD7371624287D061BDC6238C42AD1E0C42720CBABDCAD648412AF 73A4261790E	HE C	3. LEN	GIH	240
4120000044120E88BFDE82D640FD8A303FC05DA040FA552A40239FEC8FD7FEC943658E5A40FE39A74019D7883FF681004018	REC	3. 166	GTH	200
41356B0C42554C85424F5331433F8498432A40BABCC369D044328DAA4371EC154274F810411331BA5881F1754416FAD244BCC477426E761D428F74D2431B053F41228F7B4127E8BD44261EC1413A548D00000000000000000040A147AE0000000041100000				
1 AC4 0 FEB 0 7 B 3 F F 2 F F 0 4 2 7 1 9 4 C D B F D 5 0 A 8 9 B D 7 3 6 B F E 4 2 8 7 D F C 0 B D C 8 1 0 5 A 4 2 A D U D 2 5 4 2 7 2 A 4 B 0 B D C A D 6 1 6 4 1 2 B 4 2 E 8 4 2 5 1 9 7 2 2			- 6 22	
11000004412002UBFDE2E3040FD779A3FC1B0C040FA42E740242674BFD8054543658E8840FE39AC4019D72D3FF6AE404014	REC	Z. LEN	GTH -	200
D6D9E340E2E440E2C5D3F7F360F0F64040000000720000784462540D68000000046254065C083126E412588A50000069E				
D540F1F9F7F301C74BD94BC4D6E66BE2E3C1D5C6D6D9C440E4L5C9E561C3C64B40E2E3C1D5C6D6D9C440E4D5C9E540D9C5D7				
E2E3C1D5C6D5U9C440E4D5C9E540C1D7D6D3D3D640F1F640C2C950E2E3C1E3C9C340D9C1C4C1D94UC5E7D74U4D: 2F1F7F05D404040C40C9D5E3C5C7D9C1D340E3C1D7C540C6C9D3C56140F1F340C3D440C4C1E3C1b1C7C5D5C5D9C1E3C5C440F2F140D1E4		1. LEN	GTH	200
ESESCIDECEDADE ADEL SE RADE ID PRED ED ADEL ESA DE LESA DE LES ESTA DE LA CIDADE DEL CIDADE DE LA CIDADE DEL CIDADE DE LA CIDADE DEL CIDADE DE LA CIDADE DEL CID	116.6		C 70.1	200

,	2	W>		
			6	
	422B000044214631BFD 55C8DBF 03168AC17D2500BF 0692294027A97F4029CF0C436619D040FDF AB6401BFFE93FFB35204025 F308BF02DDBC3F45A850BE161DD2BF3D2B07BD73FB06428F950BBDC4328EBDEBCCE84293D964BDC13CA8BFE1690BBD9014BF 40F9746BBDAE86B54257B5AF4336C446427DC10A43125880BBD809C54349D2EA426B1AE140425C8F5880903D423589F042ED F34A4136390A41490702425ED93941197F7F4122226A442BE13A4144C9CB00000C0000000000000000000000000000	REC	6, LENGTH	200
	422A0000442145D6BFD8E204BF0301CEC166CD00BF067CD2402722B44029CED1436619AA40FDFAB8401BFFB33FFB36E04026 3B2EBF02E81B3F43F0F0BE175064BF3B433ABD73F76B428FA75EBDC4384DBDEBCD3A42940804BDC12440BFDC6DB4BD9D3314 40F34ECCBDAE97054257A5B64336D474428153E14312CA00BBD80A894349D9EC426B1D70404435AD588090984238D77142FC A1154131567F414272C6425EEF614118F9D0411EE613442BE50A4142F9020000000000000000000000000000000000	REC	5, LENGTH	200
	422900004421437ABFD96871BF02ED33C1507100BF0667A640269AEB4029CE864366198640FDFA9F401C00703FFB38704026845BBF02F2C53F4239C0BE1882F0BF3958ECBD73F3E6428FBD63BDC44F29BDEBDF5B4294369CBDC10B6EBFD7726EBD9D516A40ED29DDBDAEA795425795BC4336E4B64284E8D143133AF0BBD80B504349E0DC426B1FBE40460F5E588090E9423E472D43114CA9413CF4FB415218D04273DC424114D822411A3902442BF212414F805100000000000000000000000000000000000	REC	4, LENGTH	200
	422800004421411FBFD9EE0EBF02D911C13A1400BF0652D8402613F14029CE3C4366195F40FDFAA2401C00543FFB39C04026 CCBFBF02FD5A3F408330BE19B55ABF376C95BD73F06B428FC98EBDC43901BDEBC2F642946529BDC0F2413FD27735BD9D6FbF 40E70723BDAE37F3425785BC4336F50A4288817F4313AB30BBD80C1B4349E7DA426B228F4047EA4656B0914E423D096D4310 F465413491F44146CD31426D0A32411BC12A4120D910442C03C44148D985000U000U4228000000000000000000000	REC	3. LENGTH	200
	A227000044213EC3BFDA749FBF0ZC50DC123BA00BF063E364025BC0F4029CDDE4366193940FUFA87401C01133FFB3B604027 SABBF03082F3F3ECD00BE1AE7A2BF357E37BD73ECF9428FE05BBDC4540EBDEBD987429493ADBDC0D8BBBFCD7C07BD9D8E15 40E0E5DBBDAEC874425775CD4337056A428C186043141B40BBD80CEE4349EEDF426B251E4049C44F588091A9423F0CB04311 8386413123BB41422E67425E2CC7411E1789411DFE7E442BFFCC413D4E76000000000000000000000000000000000000	REC	2, LENGTH	200
	9226000044213L678FDAFA408F028174C10D61008F062A034025051A4029CD724366191440FDFA8A401C00UB3FF83D204027 5E588F0313043F3J18708E1C19C78F338DD18D73E991428FEC0D8DC438EDBDEBBB2U4294C2278DC08ED53FC860E48D9DAC6A 40DACA528DAED8E7425765834337160A428FBB3B43148AC0BBD80DC84349F5E7426B276C404BA2CF588091FC422F3F2A42D1 FCAC4128D7D341330C44426A120041166CFA411C2740442C0A1F41434DB1000000000000000000000000000000000000	REC	1 . LENGTH	200