Browse data for the MAG instrument consists of 16-second, major-frame averages of the measured magnetic field with subsequent analysis yielding 5-minute, 1-hour and 1-day averages consistent with Browse data from other ACE instruments. Instrument offsets, including spacecraft fields, are derived from past weeks of data and necessarily lag behind the most accurate values computed for use in Level-2 analyses. Users of Browse data should be aware that spurious AC signals, such as possible spacecraft or instrument noise, are not detected and are not removed from the Browse analysis. Depending on the accuracy and stability of offsets applied in the above manner, spacecraft spin tones may be evident in the data. MAG data is not guaranteed during spacecraft maneuvers and spacecraft nutation is likely to contribute directional errors following maneuvers.
MAG Browse data is not validated by the experimenters and should not be used except for preliminary examination prior to detailed studies.
Note: The Electron, Proton, and Alpha Monitor (EPAM) is designed to make measurements of ions and electrons over a broad range of energy and intensity. Through five separate solid-state detector telescopes oriented so as to provide nearly full coverage of the unit-sphere, EPAM can uniquely distinguish ions (E > 47 keV) and electrons (E > 38 keV) providing the context for the measurements of the high sensitivity instruments on ACE.The browse parameters contain spin averaged data coming from two of the five telescopes. The full resolution and angular data is available from the Johns Hopkins University Applied Physics Laboratory. EPAM is also part of the real-time Solar Wind (RTSW) system developed by NASA and NOAA. The instrument provides 24 hour coverage of the space weather environment as measured by ACE. For additional information contact Dennis Haggerty (Dennis.Haggerty@jhuapl.edu) or Rob Gold (Robert.Gold@jhuapl.edu).
SIS Browse data is not validated by the experimenters and should not be used except for preliminary examination prior to detailed studies.
Note: During periods of high solar activity, the livetime for these
browse parameters may not be calculated correctly, resulting in
incorrect flux values.
Two noisy matrix strip in the instrument were turned off on 2000-318.
These strips were causing the livetime for these browse parameters to be
calculated incorrectly. This is the cause of the apparent large drop in
flux on 2000-318.
Integral flux of high-energy solar protons from the T4 and T67 counting rates of the Solar Isotope Spectrometer (SIS). These browse parameters are designed to emulate the SIS proton rates contained in ACE Real Time Solar Wind Data from NOAA.
During solar quiet times, these fluxes are contaminated by background
from particles entering from the sides of the instrument.
During solar minimum (e.g., 1992 to 1998), on days when the Sun is quiet, the 7 to 10 MeV/nuc energy interval is dominated by anomalous cosmic ray (ACR) nitrogen and oxygen, with a small contribution (< 10%) from galactic cosmic rays (GCRs). Anomalous cosmic rays originate from interstellar neutral particles that are swept into the heliosphere, ionized, picked up by the solar wind and carried to the solar wind termination shock, where they are accelerated to energies of ~1 to ~50 MeV/nuc. The flux of these nuclei sometimes varies by as much as a factor of ~2 over the 27 day solar rotation period in response to interplanetary conditions. The ~40 cm2sr geometry factor of SIS allows these variations to be seen clearly. As we move toward solar maximum conditions in 1999 and beyond, the flux of ACRs is expected to decrease by a factor of ~100 or more, as it becomes more difficult for low energy cosmic rays to enter the inner heliosphere.
During large solar energetic particle (SEP) events, the intensity of low energy nuclei in interplanetary space can increase by factor of 10 to 1000 or more, and for days at a time, this energy interval can be dominated by solar energetic particles with C:N:O ~ 0.4:0.15:1. An example of such an event is seen in early November of 1997 (~Day 310). The quiet time intensity measured by this browse parameter should vary from ~10-8 per cm2sr.sec.MeV/nuc at solar maximum to ~10-6 per cm2sr.sec.MeV/nuc at solar minimum. During large solar particles events it could be as high as ~1 per cm2sr.sec.MeV/nuc.
Qualifying Remarks:
Note that the energy intervals for the most abundant elements C, N,
and O all differ somewhat from the nominal values of 7 to 10 MeV/nuc.
This browse parameter responds mainly to anomalous cosmic rays during solar-minimum quiet times, to galactic cosmic rays during solar maximum quiet times, and to solar particles during large solar energetic particle events (see discussion for the 7 to 10 MeV/nuc CNO browse parameter). The quiet time flux should vary from a few x 10-8 per cm2sr.sec.MeV/nuc at solar maximum to ~10-5 per cm2sr.sec.MeV/nuc at solar minimum. During large solar particles events it could be as high as ~0.1 per cm2sr.sec.MeV/nuc.
Qualifying Remarks:
Note that the energy intervals for the dominant elements C, N, and O
all differ somewhat from the nominal values of 10 to 15 MeV/nuc, and
that the relative abundance of the contributing elements depend on the
source of the particles, as noted above and in the description of other SIS
browse parameters.
During solar quiet times this browse parameter responds mainly to galactic cosmic rays, with an admixture of anomalous cosmic ray Ne (see also discussion of 7 to 10 MeV/nuc CNO browse parameter from SIS). During large solar particle events the intensity can be orders of magnitude greater for periods of days. The quiet time intensity should vary from ~10-8 per cm2sr.sec.MeV/nuc at solar maximum to a few times 10-7 per cm2sr.sec.MeV/nuc at solar minimum. During large solar particle events the intensity could rise to >10-2 per cm2sr.sec.MeV/nuc.
Qualifying Remarks:
Note that the quoted energy interval of ~9 to 21 MeV/nuc is strictly valid only for Si. For Ne the corresponding interval is ~8 to ~17 MeV/nuc, while for Fe it is ~12 to ~26 MeV/nuc.
For more information on SIS, see The CRIS/SIS Home Page.
SWEPAM Browse data is not validated by the experimenters and should not be used except for preliminary examination prior to detailed studies.
For more information contact Dave McComas (dmccomas@swri.edu) or visit the SWEPAM website at http://swepam.lanl.gov/.