LULEAI i 2001:304
TEKNISKA

UNIVERSITET

Software Modem for the Munin nano Satellite

Johan Axelsson-Ahl

Civilingenjorsprogrammet Datateknik

Institutionen for Systemteknik
Avdelningen for Programvaruteknik

2001:304 « ISSN: 1402-1617 * ISRN: LTU-EX--01/304--SE

Software M odem for the Munin nano
Satellite

A Master Thesis in Computer Science
By:

Johan Axelsson-Ahl

Lulea University of Technology
October 1998

1 Abstract

At the Swedish Ingtitute for Space Physics a very small satellite, a nano satellite, is being
constructed (1997-1998). The satellite, called Munin, is built with standard components, but
also carries state of the art scientific instruments. A part of the project isto obtain a public
outreach and to use it as a educational tool, for these reason students are taking part in each
step of the construction and implementation process.

This thesis work describes the implementation of the ground stations communication
equipment. The reception mechanism consists of a modem, and a PC controlling the modem.
The modem’'s main equipment is adigital signa processor. All the logic for the modem is
made in software. The modem controller is made as an device driver under the Linux
operating system on a standard PC. The modem and the controller communicates over a
standard RS232 interface.

The modem achieves acceptable bit error rates at realistic low field strength levels for the
signal to be able to receive the necessary amount of data from the satellite.

2 Preface

This Master Thesisis the final assignment for the Master of Computer Science and Software
Engineering educationa program at Luled University of Technology.

Thisthesiswork was initiated and carried out at the Swedish Ingtitute of Space Physics (IRF)
in Kiruna. It was made within the Munin satellite project.

| would like to thank my supervisor at IRF, Walter Puccio. He has been a great help for me
during the practical implementation of the assignment, and who without this thesis perhaps
never would have been finished.

8

Table of contents

ABSTRACT ..ttt a 888 s e e AR At b ettt 2

PREFAGCE ... oottt 8 8 £EsEE b EaeeR e b e 3

TABLE OF CONTENTS ...ttt s bbbttt 4

INTRODUGCTION .ooeieerererieessseessssesesessesesssssssssessssssssssssssssssssssssssssssssssessssessssesssssssssassessssessssessssessssssssssssessssessnsesnes 5
4.1 BACKGROUND......cvuteeereesesessesessesessesesssssssssssessssesssssssssasssssssssssssssssessssessssassssssssssssssssssssssessnsesnsessnssssssssssssssesas 5

411 The Swedish Institute Of SPACE PNYSICS.........coireiirrierieeeeee s 5

412 TheMunin Project
4.2 PURPOSE OF THIS THESI S....ttecteeesessesesseseasesessesseessseesstsessssessssessssessssessssssssssssssssssssssssssssssssessssssssssssssnsssnssns 7
4.3 SCOPE ... tteuttreuetreustreastsesesseaseset s e e e e se e s e et e e s b e e s ee s e R b 4R E e b £ E AR E R e AL A e £ e A ee AR bbbttt 7

ANALY SISttt £ A R bbb bbbttt 9
51 REQUIREMENTS ON THE SYSTEMcutuiuiriusetusestieesstsesstsestsesssese s ssesssssssesssssssssssssssssssssssssesssssssssssssssssssssens 9
5.2 SYSTEM M ODEL

D21 OVEIVIBW .ottt bbbttt

522 INFOrMALTION FIOW.......iuiiieieciieiriee ettt et bbbt 10
53
5.4

54.1 =TT

542 ReCEIVING DALA.......cnirierrerriereereenesesisesisee s

543 Transmitting Data

544 Adjusting MOGEM PrOPEITIES......cocciucieiriecicisece ettt sss e sss et se s ss s s st s s sassessasaesessnnans 14

545 Internal States

5.4.6 Channel AQAPLIVE FIlTEr ...t ea s s s anaas 15

5.4.7 Pseudo NOISE SCrambliNg.......cccceiiierieiriniseiriesiesesesietsssss st sse e ssssssesssss st sessssssssssssassesssssnsans 16
55 THE LINUX DEVICE DRIVER

D51 OVEIVIBW oottt bbbt bbb bbbt

5.5.2 Loadingthe Device Driver Into Linux Kernel

5,5.3 Transmitting Data to the Modem

554 ReCeiVING Data frOM DSPcciiiirieeireiiresinee ettt
5.6 UTILITY PROGRAMS....ctteietrerseressesessesessessssessssessessssessssesssssssssassessssessnsessssssnsns

5.6.1 LiNUXDSP LOAUE ... sesesas e

5.6.2 Adaptive Filter Calculator.

L30T T = oo OT O 19

5.6.4 Usage Example Functions for the LinUX DEVICE DIIVEN ... sssssssesessseens 19

CONCLUSION ..iiieiirtieieieisis et isese bt s st s b st as e s e bbb s b E s bbb sttt bbbt et reaes 21
6.1 RESULT w.eeutreuttreuseete it sese bbbt bbbt s bbb bbbt 21

B.1.1 TS ittt AR R ARt 21

REFERENGCES ...ttt et b bbbttt bbb 22
7.1 LITERATURE ...coututttetrteessetseses st sesesseaessesee s sss s eese bt s et s bbbt e et s bbbt 2
7.2 WWVEB SITES ...ttuetrtueestesesseressestse st b s bbbttt bbb bbbttt bbbt 2

O @ 1 1V ST 23

4 Introduction

This Master thesis was carried out at The Swedish Institute of Space Physics (IRF), at the
Kiruna division. The main purpose of the thesis work was the construction of the ground
station modem for the Munin satellite system in software on a Digital Signal Processor
(DSP). The assignment also included the construction of the software controlling the modem
from a remote PC compulter.

4.1 Background

41.1 The Swedish Institute of Space Physics

IRF, founded in 1957 by the Swedish Royal Science Academy, is since 1973 a governmental
research institute. The primary tasks for the organisation is to carry out fundamental research,
serve as an educational resource, and to perform associated observatory activities in the space
physics area.

IRF has about 120 employees, divided in four divisions: The Kiruna Division (IRF-K), where
the main office is located, the Umea Division (IRF-Um), the Uppsala Division (IRF-U), and
the new Solar Terrestrial Physics, Lund Division (IRF-STL).

The main research carried out by IRF is experimental and theoretical fundamental research in
space and atmospheric physics. This includes among others magnetosperical and
ionospherical physics. The tools used for measurements are satellites, probe rockets,
stratosperical balloons and ground based equipment like radar and cameras.

4.1.2 The Munin Project

Sweden has a successful tradition of building very small satellites, micro satellites, for space
research. |RF has been very active in these projects, in the construction of the satellites and
by providing scientific equipment which experiments are carried out on. Examples are the
satellites Astrid and Freja.

In the autumn of 1996 a project aiming to construct an even smaller satellite, a nano satellite,
was started at IRF. The satellite was going to be low cost as it would made out of standard *of
the shelf’ components, and much of the construction would be made by students in thesis
work and in student projects. The satellite, named Munin, was designed together with
students from the Space Engineering Program of Umea University.

Although the satellite is low cogt, it has clear scientific goals. The scientific objective with
Munin isto collect data on the auroral activity on both the northern and southern hemisphere,
so that aglobal picture of the current state of auroral activity can be made. The data collected
by the satellite will be published online through the Munin World Wide Web server for
everyone to use. The data collected will mainly serve as an input to the prediction of space
weather.

MEDUSA alectron/ion
Spectrometer

Data
Frocassing
Lnit

Support

Strut
Battery

Attitude
Magnet

Libration
Damper

Radic ~ piscc/ % DINA Sensors
Transcigvar {CCD Camera) Libration
Dampear

Figure 1. The Munin satellite

The very low mass satellite, weighing only 5kg, is equipped with several highly modern
scientific instruments to achieve its goals. It is equipped with a combined electron and ion
spectrometer called Medusa, constructed by Southwest Research Institute (SwRI). The
Medusais aso flown on the Swedish Astrid-2 satellite. The satellite will measure hight
energy particles with a solid-state detector (DINA sensors). Also aminiature CCD camerais
carried by the satellite, taking pictures of the auroral activity. All information from these
instruments will be published on-line on the Munin web site.

The satellite has a passive attitude control systemusing magnet and oscillation dampers.
Silicon solar cells and a Li-l1on battery provide the needed power. The satellite uses the UHF-
band for the up- and down link to the ground station. Digital Signa Processors perform
instrument control, data compression and telemetry formatting, as well as serving as a
software modem. The Mechanical Engineering department at Lulea University of
Technology (LTU) has developed the launch rocket — satellite separation system. The
satellite was built during 1997/98 and will be ready for launch now in the fourth quarter of
1998.

Tx || Rx
Radio

Doppler Arterre
Shift Control

Trackbox l

Satellite Tracking

| Tnternet
Figure 2: Layout of the ground station

The ground station for the satellite system is situated in a building called “ Snickeboa* near
the IRF office complex outside Kiruna. The stations main tasks are to receive scientific data
and to transmit control commands to the satellite, and also up-load new executable code for
the onboard computer. It will be manned and controlled by students from Umed University.
The ground station will be equipped with a “trackbox“ working in conjunction with a
dedicated satellite-tracking computer. The tracking computer will use Doppler shift
positioning technique to control the antenna attitude towards the satellite so it can obtain
optimal receiving conditions. The signals received are handled by the software modem
running on a DSP system, controlled by a Linux driven computer. Finally thereisa WWW
server, hooked on to the Internet, doing the publication of the received scientific data.

4.2 Purpose of this thesis

The purpose of this thesis was to design and implement a ground station signal

modul ator/demodulator (modem) for the Munin satellite. The assignment was to implement
the modem in software on a DSP signal processor. A Linux device driver, connected to the
DSP viaan Universal Asynchronous Receiver Transmitter (UART) serial interface should
control the modem. The device driver should act as an ordinary Linux device file, formatting
the output to an easy to read format and to simplify the control of the modem.

The modem should be able to receive al data from the satellite gathered during one orbit
around earth. It should also have the ability to control the satellite by uploading control
messages and new binary code.

4.3 Scope

This work limits to construct the ground station modem on a TM S32050 DSP, the Linux
device driver controlling the modem, and a loader utility in Linux for easy downloading of
executable code to the ground station modem DSP. A phase correcting filter optimal for the

7

modem constellation, placed in the DSP modem on the satellite for implementation reasons,
should also be constructed. The assignment also includes the implementation of a protocol
for the uploading of commands to the satellite.

The modem carried by the satellite is not considered in this thesis, although much of the work
made on the ground station can be used for the satellite implementation

5 Analysis

This thesis work was very practical in its nature. The demands on the system, and the
hardware to solve the problem were already decided when | started the work.

51 Requirements on the System

The demands on the system is that under normal atmospheric conditions it shall be able to
transfer al scientific data collected by the satellite during one orbit around earthwith only a
low number of faulty blocks,. If the atmospheric conditions are poor and the ground station
modem are producing to many faulty blocks, the operator shall have the ability to adjust the
transfer speed to get more correct packets, actively lowering the bit rate.

The operator shall be able to transfer control commands and new binary code up to the
satellite.

5.2 System Model

521 Overview

The system (Figure 3) consists of the Munin satellite orbiting earth, and a ground station
situated near the IRF office complex outside Kiruna. Munin will orbit earthat an altitude of
1000km and passes over the ground station 9-11 times a day.

In the satellite there is a DSP modem communicating with the ground station via a FM-
transceiver. The signal is modulated with binary Pulse Amplitude Modulation (PAM) on the
FM signal and transmitted to the ground station on the 400MHz band. The ground station has
atransceiver receiving the signal, and a DSP modem implemented in a TM S320C50 device
processing the signal. The DSP communicates over an UART seria interface with a device
driver in aLinux driven standard PC, transferring the received signal. The device driver has
some of the functionality found in a‘normal’ Linux character device driver. A process can
read and write from/to it using Linux standard libraries (read() and write()). The output from
the device driver is formatted to ease reading, and input to it has to be formatted obeying a
set of rules to ensure security and the integrity of the satellite.

Satellit

DSP-Modem

FM-Transceiver

A
WWW- Linux :
Server Operator 4
Interf
nterrace FM-
<«— Fleys [™V ¢ 5 DSP-Modem|«—» Transceiver
Ice

Figure 3: Overview of the communication system for the Munin nano satellite.

522 Information Flow

Just before Munin rises over the horizon relative to the IRF ground station, it starts to
transmit scientific data gathered over earth in its previous lap, which have beenstored local
in the satellites RAM modules. The data have been compressed and placed in blocks of 512
bytes. The data is transmitted over the FM transceiver on Munin to the ground station. The
analogue signal is transferred to the DSP modem, which synchronises to the signal and starts
to decode it. The modem produces a bit stream and transfers it to the Linux device driver
over aRS232 serid interface. The Linux device listens to the bit stream and searches for a
pre-defined bit pattern identifying that a valid data packet is received. Valid packets are
stored in Linux kernel memory space in acircular buffer containing up to 32 packets.
Processes reading from the device get one packet of 512 bytes at a time. Figure 4 showthe
signal is adapted through the system.

There could also be service information about the satellite arriving, in the same manner as
ordinary data. The device driver does not recognise the difference between data and service
information, it is the responsibility of the reading process to make the distinction.

Satellit
DSP-Modem
FM-Transceiver
Linux >
DSP-Modem v
Operator|
Interface] FM -
Filesys gM_— < @4—-4—E< Transcelver
evice

+ + - =
..101101.. -« - %

Figure 4: Signal manipulation by modem

10

Transmission up-link to the satellite either contains control commands or upload of new
executable code. It is carried out in the reversed order to the reception previously described.
Only one process at a time can have the device opened for writing.

When the ground station is transmitting data the reception is shut of because of the radio
interference.

5.3 Data Packet Format

The datais placed in 512 bytes packets. Each block has a header containing a four-byte
keyword leaving 508 bytes for the payload (figure 5). The communication system does not
analyse the payload and it is free to put any kind of data here, it is up to the receiver to
analyse and evaluate the contained information. No error detection or error correction is
made on the packet; it is left to the user of the protocol.

0 1 2 I 511

[ocE[oo JoBAaoeE]] |

Figure 5: Data packet with keyword.

The sender and the receiver have to keep track of the number of valid bytes in the packet if
the packet is not totaly filled.

54 The Ground Station DSP Modem

54.1 Overview

In figure 6 the DSP modem board is shown when the board is used for recelving, and in
figure 7 when it is used for transmitting. Some of the physical circuitry is used in both cases,
while other is dedicated for its case.

11

|
|
| :
[DSP a
I o
I : :
FM- | LP- AD o Synchronization :
Transceiver || Filter [”| and quantization ||
I 3
! 3
I il
RS232! : EI
Linux | Buffered PN- g
Device - T 1/0 - Decoder |~ iI
| : 1
l g
L o o o _Irmnomnoir

Figure 6: DSP modem board and connections when receiving data.

Figure 6 shows how the modem is configured to receive data. The signal from the transceiver
isrun through an analogue low-pass filter with cut of frequency adjust to remove high
frequency noise. Then the 12 bit A/D converting the signal to the digital domain quantifies
the signal. The signal, now represented as an integral value, is quantified and analysed. The
DSP tries to synchronise with the signal and to find valid data bits in the stream. When
synchronised the DSP enters a phase-locked loop to retain the sync. The now hopefully valid
bits are delivered to the Pseudo-Noise (PN) decoder converting the coded stream into its
origina shape. The bits are shifted into a temporal buffer until awhole byte is received. The
byte is then transferred to the 1/0 interface, which sends it to the Linux device driver over
standard RS232 interface.

|
| |
| |
\{Y/ | DSP |

|
: |

I :

FM- - | DA ; Smothening D
Transceiver [~ | R Filter = -
: S

|
| PN- I
| Encoder :
_ RS232! : X |
L inux < l 1/0 Port | Clocking [
Device « > R |
| !

Figure 7: DSP modem board and connections when transmitting.

In figure 7 the transmission procedure is shown. The Linux device transfers bytes set for
transmission to the satellite over the RS232 interface to the I/O port on the DSP board. The
DSP reads from the 1/0 port when the clock ticks according to the transmission baud rate. It
sgnds the Linux device when it is ready to receive next byte. The byte is shifted to access
the bits in transmission order. The bits are run through a PN-encoder to get them into a
format suitable for transmission. After quantification and over sampling of the bits they are

12

run through a smoothening filter that makes the square wave sinusoidal. The bit stream is
then sent to the D/A, which makes an analogue signal of the integral values. The stream is
transferred to the transceiver that transmit the coded bytes to the satellite.

The system on the DSP is atime critical system, and it is totally interrupt driven. It uses the
system clock interrupt to achieve the right bit rate when receiving and transmitting. It sleeps
until it gets an interrupt, it analyses the interrupt and starts to execute the appropriate code.
However, when the DSP is decoding the incoming signal at highest speed, almost all
processor time is used up for program execution.

All code for the DSP was written in Assembiler.

5.4.2 Receiving Data

The receiving process is shown in figure 7 above.

The modem is constructed to receive data at four different bit rates. 4800, 9600, 14400, and
19200bps. Specia channel adjusting digital filters are included in the signal path customised
for these bit rates. The system switches between the filters depending on the current bit rate.
These filters are placed in the satellites modem for implementation reasons, there are not
enough clock cycles left for the ground stations modem to run the filter when the highest bit
rate is used.

54.2.1 Locking DSP to incoming signal

The synchronisation functionality between the signal and the modem liesin the signal it self.
Because the data bits are coded with binary PAM, zero crossings for the signal occurs
whenever there is a shift in bit value from high to low value. This fact is used to manage the
synchronisation of the modem to the incoming signal.

The fact that the bits are PN-scrambled guarantees that shifts in bit values occur relatively
frequent.

L §2 3 P4 5 6

Figure 8: Modem sampling of incoming signal from radio.

The signal from the radio is constantly analysed by the reading process. It is sampled six
times during one period according to the current bit rate setting (two data bits per period).
The DSP timer interrupt govern when the samples are taken, one sample per interrupt period.

Samplel and sample2 are taken as a synchronisation samples. If they have different signsa
zero crossing has occurred between them, and the modem tries to synchronise to the signal.
When synchronising to the signal the absolute value of the two samples are compared. If the
absolute value of samplel islarger than sample2 the modem takes the data sample to early.
To adjust the modem the next sample, sample3, is delayed a few time units to get the data

13

sample point closer to the extreme of that bit. If the absolute value of samplel is smaller than
sample2, sample3 is taken earlier.

Then sample3 is taken as a data sample.
Again sampled and sampleb are synchronising samples.
5422 Decoding data

As shown in figure 8 above, every third sample is taken as a data sample. If the value of the
sample is positive, it is decoded as a one received. If it is negative it is decoded as zero.

5.4.2.3 Sending to Linux device

As the bits are decoded they are assembled into bytes and transferred to the Linux device
over the serial interface. The modem does not try to analyse if it redlly is synchronised to any
signal, it is Yo to the Linux device driver to decide if valid data bits arrives. The Linux device
makes this by scanning the bit stream for the 4 byte wide code word that is first in every valid
data packet. If the device finds this code word it knows that the following 508 bytes are valid
data bytes.

5.4.3 Transmitting Data

The transmission process is shown in figure 8 above.

The modem can only transmit data at 600bps. This relatively slow transmission rate is
sufficient because only a few bits are necessary to transmit when sending commands to the
satellite. The upload of new executable code is not foreseen to occur often. By using such a
low bit rate the algorithm for receiving the signal in the satellite gets less complex.

5431 Receiving data from Linux device

The Linux device driver sends a byte viathe serial interface, and the modem receives an
interrupt from the UART interface, which tells that new data is available in its registers. The
modem then enters its “transmitting mode® and stops decoding incoming bytes. Itisa
protocol between the Linux device and the modem managing transmission. In this protocol
the Linux device gives the number of bytes that the message consists of.

The modem transmits the byte to the satellite, and signals to the Linux device to transfer the
next byte for transmission by setting the MCR signal in the UART interface. When the
indicated number of bytes has been transmitted the modem goes back into listening mode.

5.4.3.2 Preparing data for transmission

Before the data bits are transmitted they are PN-scrambled by the modem. To make it
possible for the DA to construct the out signal the bit values are first given anumerical value,
the maximum and minimum values that the YA can handle. The bits are over sampled to
make it possible to construct a smooth signal. Then they are run through a smoothening FIR
filter to get rid of the sharp edges between ones and zeros.

5433 Transmission

When atransmission is initiated the data bits cannot be transmitted at ornce. The satellite
signal reception mechanism must get a chance to get synchronised with signal. So a dummy
vector of bits are sent first, about 300 bits. The data is transmitted, and then again the dummy
vector is transmitted to push out the valid bits from the digital filters on the modem.

54.4 Adjusting Modem Properties

It is possible to adjust some of the modem settings while code is actually executing on the
DSP. Viathe Linux device driver al program memory onboard the DSP can be accessed and

14

manipulated. Thisis avery useful feature because it enables the operator of the Linux device
driver to have full control of the modem.

Actualy, only afew memory positions are realy interesting to manipulate. In the Linux
environment these are pre defined in a header file to simplify for the device driver user.

The transmission protocol between the Linux device and the modem shows if the bits
received from the Linux device are data for transmission to the satellite, or if it is control
commands to the ground station modem.

54.4.1 Variables interesting to change

The modem variables interesting to change are quite few:
The variable containing the timer interrupt interval to change the receiving bit rate.

The variable containing the adjustment step that the timer variable is inflicted with when
the modem tries to synch to the incoming signal, to tune the synching mechanism.

The variable containing the “mean value of the incoming signal that is subtracted from
the incoming signal to get zero passes. This makes it possible to tune the modem
performance in case of temporal constant disturbances.

545 Internal States

The modem can be in three different states.

The “receiving” state, which isthe “norma* state, when the modem constantly tries to
synch to a signal and decodes bits from the signal.

The “transmission” state, transmitting data.

The “transmission cool down* state a while after it transmitted data to the Satellite. This
state is necessary to speed up the transmission of messages in sequence. Because the
satellite already is synchronised to the signal no synchronisation period is necessary before
the data bits are transmitted.

5.4.6 Channel Adaptive Filter

The transmission channel, the disturbances inflicted on the signal from the transmitting
process to the receiving process, consists of both linear and non-linear sources. The sources
are for example phase shifts due to analogue filters, quantification errors in the A/D and D/A
and so on. Also the mediathat the signal is transmitted over, the atmosphere deprecates the
signal. Some of these disturbances, like those caused by electrical components, are however
relatively constant and can be estimated. By inserting a channel adaptive filter into the
transmission channel in the system construction phase at |east the constant disturbances can
be eiminated. A simple agorithm uses a FIR filter as the correcting factor and is described
below.

When the correcting filter is constructed a signal is transmitted through the transmission
channel. The deprecated signal is received by the DSP and analysed. The value measured at
the data sampling point is examined. A guess is made. If the value is larger than zero the
algorithm guesses that it should be aone that is received, and assigns the sample the extreme
positive value of the signal. If the value is negative the guess that the value should be a zero
is made, and the sample is assigned the extreme negative value. The sample is then compared
with the output of the filter (figure 9). The difference between the filter output and the guess
serves as input to the recalculation of the correcting filters coefficients.

15

c(i+)=c()+2B*ei)*r(- k) |, %)=
et Je2 Je3 fo [c5 [o6 o7 o8 oo | 0]
® Qi) ® ® ég ® OO O
v vy v VvV vy y(i)
—blrl |r2 |r3 |r4 |r5 |r6 |r7 |r8 |r9 | _______ |r(i)i l
| » [_>©_

Figure 9: Channel adaptive filter

When this algorithm is run, the parameters slowly converge toward their accurate values.

The algorithm in figure 9, shown closer below, is trimmed by setting the constant B. With a
large B afaster but less accurate result is achieved.

¢ (i +1) = (i) +2B*e(i)*r(- k)

e(i) =r(i)- y()

yi)=a ¢ *r(i- k)
k=0

5.4.7 Pseudo Noise Scrambling

In the Munin communication system the data transferred between the satellite and the ground
station is, as mentioned above, modulated by Pulse Amplitude Modulation. The receiver gets
synchronised with the received signal by recognising shifts between high and low levelsin
the signal, e.g. ones and zeros. For the receiver to get and retain this synchronisation the
signa hasto do this shift ever so often. But binary data can contain monotone sequences of
either ones or zeros. When this occur no shifts between high and low signal values take place,
and the demodulator cannot lock to the signal. To get around this problem a pseudo noise
generator, forcing shifts to occur, scrambles the data transmitted and the possibility for the
receiving demodulator to get in synch with the received bit stream increases.

The technique used to achieve the PN scrambling of the data, is to shift the bits for
transmission into a register as showed in figure 10. Then XOR’ing together three pre-defined
bits from the shift register. The result of the XOR operation is then transmitted. Next data bit
queued for transmission is then shifted into the register, and the XOR operation takes place
again for the next transmission operation.

16

—> | X1 [X2 | X3 | X4 | X5 [X6 | X7 |X8 [X9 [X10[X11|X12|X13|X14|—>»

YVYyY
1
H

Figure 10: Pseudo Noise scrambling

At the receiving end the inverse operation is performed. The incoming bit stream isin the
same manner put into a shift register and the same bits as on the transmitting side are
XOR' ed together, producing the originally transmitted bit.

Thisisavery low cost operation, counting in processor instruction cycles, which produces a
data stream where it is possible to synch with the amplitude. The down side of this method is
that one transmitted bit that is received corrupted, can corrupt three data bits.

55 The Linux Device Driver

55.1 Overview

The device driver controls the modem board viathe UART seria interface. It can load data to
the modem set for transmission to the satellite, or control commands to the ground station
modem. To use the device driver as awriter a certain protocol is followed. A specific code
word must be first in every command or data vector if the driver isgoing to alow it to be sent
over the modem, this to protect the satellite from unintended commands. Only one Linux
process can write to the driver at atime.

The driver also acts as a reader from the modem, listening to the incoming bit stream and
analysing it for valid data packets. The driver collects bits to bytes, and the bytes are
buffered. Reading processes can receive single bytes up to a whole buffer size worth of data,
512 bytes, at atime. There is no restriction up on the number of listening processes that can
use the driver simultaneously.

The device driver is written in the program language C, and it is an ordinary Linux character
device. It is accessed via ordinary device system cals, like the system calls read() and

write().
The device driver is partly interrupt driven. It reserves the interrupt own by the UART

interfacing the modem. When the UART fires an interrupt the driver questions the UART for
the cause, and acts accordingly.

The computer that the driver isloaded in is connected to the modem board through an RS232
interface. An UART16550A serid card interfaces the modem board. The UART has a 16
level FIFO queue for both transmission and reception

The device driver is written as a loadable Linux kernel module. This means that the module
isonly loaded into the kernel when it is needed, saving kernel memory space when not used.

55.2 Loading the Device Driver Into Linux Kernel
The device driver can be loaded at any time, either a boot time or dynamically when it is
needed. This is afunctionality that Linux provides. When the driver is loaded into kernel

space some resources must be reserved. The interrupt for the UART and the UARTSs 1/O port
address is alocated. If another process already reserves these resources the loading will fail.

17

55.3 Transmitting Data to the Modem

A writing process accesses the device through the Linux device control system, thefile
system (figure 11). For the writing process the device acts as an ordinary file.

Because the I/O interface towards the DSP is much slower, there is a circular buffer for
temporary storage. Two pointers access this buffer. One managing where the next write will
take place and the other the next byte that will be transmitted to the DSP. If there isrisk for
buffer overrun the writing process is blocked until there is some free space in the buffer
again.

The device sends data to the modem viathe serial interface. It sends one byte at atime.
Between byte transmissions a signal is excepted over the UARTs M SR line. When this signal
is received the UART firesits interrupt and indicates the received signal. The device driver
then gets the next byte from the buffer and sends it to the UART.

TX buffer pointer

TX-data
<—

Buffered
S—b 1/0 Port
M SR
interrupt gl?fbytes

| _buffer

Writing =
process

Linux

filesystem

Reading processes buffert pointers

Figure 11: Transmitting process

The device driver controls that only one Linux process at a time can have the device opened
for writing.

554 Receiving Data from DSP

The reading from the /O port takes place continuously. To make the system as efficient as
possible it buffers a couple of bytes before it fires its interrupt, because of the overhead an
interrupt inflicts on the Linux system. The device driver (figure 12) has a set of 32*512 bytes
buffers to place incoming data into. These buffers are accessed in a circular manner. The
reading process, as in the writing case, accesses the device driver through Linux file
interface. When areading process starts to read it will not get data until a transmission buffer
has been filled.

Several reading processes can be active simultaneously, each having a dedicated reading
pointer into the drivers buffer space.

The device can be opened both for buffered and un-buffered read.

18

RX buffer pointer

— 5| Buffered
1/0 Port

32*

512 bytes

buffers
Reading -
processes

u oo frlesystem: o

Reading processes buffert pointers

Figure 12: Reading process

5.6 Utility Programs

A couple of utility programs have also been constructed. Some as part of the assignment,
other as help programs in the modem construction process.

56.1 Linux DSP Loader

There is no Linux loader available for the DSP used in the modem. From Texas Instruments
FTP base source code for aDOS environment loader is available. After some reprogramming
of the 1/0O parts it worked fine under Linux.

This program proved very helpful during the testing phase of the DSP code, and it shall be
used by the Munin project as modem boot tool.

5.6.2 Adaptive Filter Calculator

It is very difficult to calculate the parameters for the channel-correcting filter used in the
transmission channel theoretical. Quite a few parameters must be weighted and an accurate
knowledge of these parametersis essential. Instead a program that calculated the parameters
numerically was constructed.

The idea is that the modem sends a pre-defined signal, passes it trough all the components of
the transmission system and a simulated transmission channel, and then receives the signal it
self. The program compares the sent value with the received and adjusts parameters of a
digital FIR filter acting in the transmission system accordingly.

The program is ssimply run for a minute or so until the parameters of the filter has stabilised,
and the filter parameters have been calculated.

The filter constructed by this program lowered the Bit Error Rate (BER) at low signd field
strengths.

5.6.3 Osc.

A program called “osc* measures exactly what the DSP receives from the AD converter. It
sends the values to a DOS program that displays them graphically.

This program proved useful in the debugging process of the modem code.

5.6.4 Usage Example Functions for the Linux Device Driver

To make it easier for the one that eventually will use the program and design a graphical
command interface for the modem, a couple of example programs were constructed. These

19

programs show how to read from the device, appropriate system calls, and how to write to the
device in a secure way.

20

6 Conclusion
6.1 Result

Tests made shows that the modem achieves to receive all data from the satellite from one
journey around earth. It achieves acceptable BER with low enough field strengths from the
satellite transmission.

6.1.1 Tests

The tests were made on a channel simulator. The signal was generated by the modem that
will be placed in the satellite, passed through the channel simulator, and received by the
ground station modem. The signal transferred was known, and al errors at reception were
counted.

Some parts of the system were not used during these tests. The antenna and the pre-amp were
not used (due to practical reasons). When these components are incorporated in the system
approximately another -20 dB lower filed strength will be achievable according to my
supervisor at IRF, Mr W. Puccio.

The demand on the tested system was to reach a BER around 1E-4 with field strength around
-91 dB.

Baud Rate Field Strength BER SNR

9600 -86 5.0E-7 46
-88 1.0E-5 35
-90 1.7E-4 26
-91 49E-4 22

19200 -86 2.0E-6 42
-87 5.0E-6 39
-89 4.1E-5 30
-90 2.0E-4 24
-91 1.2E-2 9.6

The Signal to Noise Rate (SNR) above is calculated by:

2&[NRO
T2,
e 2

NR=2*Q'(R)

Which is valid for binary PAM.

21

7 References
7.1 Literature

Stevens, Richard W. 1996. Advanced Programming in the UNIX Environment. Addison
Wesley Publishing Company.

Proakis, Salehi. 1994. Communication Systems Engineering. Prentice Hall International.

Kernighan, Brian W. & Ritchie, Dennis M. 1989. The C Programming Language. Prentice
Hall International.

Dr. StevenA. Et d. 1997. V. 34 Transmitter and Receiver |mplementation on the
TMS320C50 DSP. Texas Instruments.

7.2 Web Sites

IRF: The Munin home page. URL: http://munin.irf.se/ (1998-10-16)

Southwest Research Institute URL: http://www.swri.edu/ (1998-10-16)

IRF: IRF home page. URL: Http://www.irf.se/ (1998-10-16)

The LinuxHQ Project: LinuxHQ home page URL.: http://www.linuxhg.com/ (1998-10-16)

Texas Instruments: Texas instruments home page URL: http://www.ti.com (1998-10-16)
EXAR: ST16C550 URL.: http://www.exar.com/products/st16¢c550.html (1998-10-16)

Chamers Technical Institute URL :
http://www.cs.chalmers.se/Cs/Grundutb/K urser/xjobb/Doc/AttDokExjobb-1.html (1998-10-
16)

22

A/D

BER
bps

D/A
DINA
DSP

FIFO
FIR
FM

MEDUSA
Modem

PAM
PLL
PN

SNR
™
UART

Acronyms

Analogue to Digital

Bit Error Rate
bits per second

Digital to Analogue
Detector of lons and Neutral Atoms
Digita Signal Processor

First In First Out
Finite Impulse Response
Frequency Modulation

Miniaturised Electrostatic DUal-tophat Spherical Analyser
M odul ator/Demodul ator

Pulse Amplitude Modulation
Phase Locked Loop
Pseudo Noise

Signal to Noise Ratio
TeleMetric
Universal Asynchronous Receiver Transmitter

23

